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SUMMARY OFWORK

The application of large-scale simulation to problems in shape optimization is very difficult
for (at least) three reasons. First, the objectives can not always be stated a priori, and thus
there is reluctance to expend resources. Second, simulations are still very expensive, at
least for most complex physical problems, and thus optimization -- which calls for
repeated appeal to the forward problem -- is often prohibitively costly. Third, many
interesting problems in shape optimization also require variations in topology: the latter
introduces singularities that frustrate many classical optimization procedures.

In this grant, we have proposed an approach to shape optimization that addresses, or at
least mitigates, these difficulties. First, as regards how the problem is posed, we have
applied concepts from multi-criterion optimization theory, in particular, Pareto theory. The
Pareto formulation permits the designer to identify (monotonic) preferences in certain
performance metrics (e.g., lift and drag), and then obtain a trade-off curve between these
variables; all points on this trade-off curve are optimal in the sense that there is no design
point at which both metrics can be improved (e.g., both lift increased and drag decreased).
This trade-off curve can then be used to help the designer identify the right balance between
different preferences, and determine the optimal operating point once these preferences are
established.

Pareto optimization has been used only rarely (if ever) for complex problems in fluid
dynamics because the determination of the trade-off curve constitutes a difficult rain-max
problem that requires many appeals to the (expensive) simulation. Our approach to
alleviating this computational bottleneck is to replace the simulation with a simulation
surrogate, In particular, we first construct a model, or surrogate, of the input-output
behavior of the simulation -- based on some small set of input-output pairs -- and then use

this surrogate, not the original simulation, in the resulting (Pareto) optimization. The
surrogate, unlike the original simulation, is very inexpensive to evaluate, and thus
extensive optimization can be performed; of course, the surrogate may also be significantly
less accurate than the originating simulation.

To address the accuracy question, we have developed an extensive statistical validation

procedure and associated theory for understanding how well a surrogate is performing, and
whether any particular surrogate-predicted result can be trusted. The latter is, in fact,
facilitated by the Pareto framework, since the region of input space of interest is narrowed
to the pre-image of the trade-off curve. In particular, if the number of performance metrics
of interest (e.g., lift, drag) is small, the Pareto pre-image will typically be a low-
dimensional manifold, even if there are many design variables (inputs).

Finally, in order to treat the topology issue, we have implemented a level-set geornett'y
description within the surrogate context. [n this approach, shapes are described as level
sets of parametrized functions such that (discontinuous) changes in geometu can be
described by continuous changes in parameters which, in turn, correspond to continuous
changes in the performance metrics, The latter thus permits the use of gradient
information, critical to any efficient search algorithm.

The ingredients described above have been demonstrated in the simulation-based
optimization of a compact (laminar-flow) heat exchanger. The performance metrics in the
Pareto analysis are the pumping power and heat removal; the simulation is a full unsteady
Navier-Stokes calculation, on the basis of which a simple (radial-basis function) surrogate
input-output model is constructed; level sets are used to describe the geomet_T of the eddy
promoters through which the flow is excited and the thermal-hydraulic performance
improved.





The results of this study indicate that our approach can prove quite effective in practice,
permitting us to address problems not amenable to other techniques. However simple
("connect-the-dot") surrogate methods are fundamentally limited to rather low-dimensional
inputs spaces; although the Pareto approach permits us to validate a surrogate over a low-
dimensional manifold, we must first construct the surrogate over the entire input space. As
is well-known, approximation in many dimensions is plagued by the "curse of
dimensionality" _ there are simply too few points in each coordinate to represent the
function unless a prohibitively expensive (exponential) number of input-output pairs is
used.

One promising approach to improving the dimensionality scaling of surrogates is to exploit
state-space based models -- models that contain not only simple input-output information,
but also information originating in the underlying mathematical system that describes the
phenomenon. In a follow-on grant we will be studying this possibility, using for our
"surrogate" a low-dimensional numerical approximation, and for our validation procedure a
new form of a posteriori error estimation theory. The latter also replaces the statistical
results of our earlier work with purely deterministic bounds (albeit at some loss in
generality).

A detailed description of the results of the current grant are included in Appendix A in the
form of a recently completed Ph.D. thesis by John Otto.
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Abstract

A nonparametric-validated,surrogateapproachto optimizationhasbeenapplied to the
computationaloptimizationof eddy-promoterheatexchangersandto theexperimentalop-
timization of a multielenmntairfoil. In addition to the baselinesurrogatefi'amework,a
surrogate-Paretoframeworkhasbeenappliedto the two-criteria, eddy-promoterdesign
problem.TheParetoanalysisimprovesthepredictabilityof thesurrogateresults,preserves
generality,andprovidesa meansto rapidly determinedesigntrade-offs.Significantcontri-
butionshavebeenmadein thegeonletricdescriptionusedfor theeddy-promoterinclusions
aswellasto the surrogateframeworkitself.

A level set based,geometricdescriptionhasbeendevelopedto definethe shapeof
the eddy-promoterinclusions.The level-settechniqueallowsfor topologychanges(from
singlebody.eddy-promoterconfigurationsto two-body configurations)without requiring
any additional logic. The continuity of the c)utput responsesfor input variations that
crossthe boundarybetweentopologieshasbeendemonstrated.Input-output continuity
is requiredfor the straightforwardapplicationof surrogatetechniquesin whichsimplified.
interpolativemodelsarefitted througha constructionsetof data.

Thesurrogateframeworkdevelopedpreviouslyhasbeenextendedin a numberof ways.
First. the fornmlationfor a general,two-output, two-performaffcemetricproblemis pre-
sented.Surrogatesareconstructedandvalidatedfor theoutputs. Theperformancemetrics
canbe fimctionsof both outputs,as well asexplicitly of the inputs,and serveto char-
acterizethe designpreferences.By segregatingthe outputsand the performancemetrics.
anadditional levelof flexibility is providedto the designer.The validatedoutputscanbe
usedin future designstudiesand the error estimatesprovidedby the output validation
step still apply, and requireno additionalappealsto the expensiveanalysis. Second.a
candidate-baseda posteriori error analysis capability has been developed which provides

probabilistic error estimates on tim true performance for a design randomly selected near

the surrogate-predicted optimal design.

Thesis Supervisor: Anthony T. Patera
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Chapter 1

Introduction

1.1 Motivation

The unprecedented advances ill both computational and sinmlation capabilities have spurred

a shift in focus from the development, improvement, and application of single-analysis tech-

niques, to the incorporation of high-fidelity simulations into formal design optimization

frameworks. Although formal optimization techniques have been widely used in structural

design [34, 753, they have only recently been used regularly in fluids applications. Com-

putational fluid dynamics sinmlations are typically very CPU-intensive. and when directly

inserted into optimization routiues as a flmction-call, the evolutiou of the design to a local

optimal will advance extremely slowly. The lack of interactivity that characterizes such an

approaches may be acceptable in the very late stages of the design, but is unacceptable in

the early stages of design in which widely varying configurations are often examined and

trade studies are typically conducted.

Preliminary design is, intrinsically, an interactive process. It requires that a large num-

ber of assessments be made rapidly as design parameters are changed and updated. Fur-

thermore, as more is learned about the design in terms of its performance and reaction to

changes in input quantities, goals are likely to evolve and change as well. Methods in which

each design cycle requires hours, or even days, are clearly not useful during the evolutionary

stages of preliminary design in which flexibility and interactivity are most valuable.

An approach that has been widely pursued in an attempt to shift as much information as

possible from the late stages of the design process, where radical changes are much too costly

to be practical, to the early stages, where many design scenarios and configurations are

considered, is through analysis-approximation schemes. Fundamental to such approaches

is the notion that the extremely high simulation cost can be front-loaded, and precisely

budgeted to the construction of simulation surrogates; inexpensive input-output functions

that duplicate the responses of the high-fidelity simulation. The simulation surrogates

can then be coupled with the formal optimization techniques, the result of which is a

17



(potentially) highly-accurate,interactivedesignframework.

The primary drawbackto surrogate-basedoptimizationapproachesis the uncertainty
that is introduced,both in termsof how the performancepredictedby the high-fidelity

simulationdiffers from that of the surrogatenear particular designs,predictability, and

also as to how a surrogate-predicted optimal design point compares to the simulation-

based optimal design point, optimality [7]. Beyond post-evaluation of surrogate-predicted

design points with the simulation, both predictability and optimality are often times ignored

in surrogate-based optimization methods reported elsewhere. The validation and error

analysis steps of the nonparametric-validated surrogate framework described, and applied,

in Chapters 4--5 seeks to address these issues.

A second issue in design optimization is how to best parameterize the surfaces of the

object to be optimized. A great deal of effort has focused on shape parameterizations. In the

work presented here, the underlying desire to examine shape-families that include multiple

topologies (single and two-body configurations), and to treat the entire fanfily in a unified

approach, has greatly restricted the types of methods that are appropriate. The problem

central to this thesis is of an eddy-promoter heat exchanger. The desire to extend the

design problems beyond the single cylinder designs examined in previous work [41, 77, 79],

and the potential beneficial interaction that may result from two-body configurations, has

motivated the requirement that the shape-family encompass multiple topologies.

1.2 Design Optimization

Formal design optimization procedures have received increased attention in the fluid dy-

namics comnmnity recently. Both the increased computer capabilities and the improve-

ments in computational fluid dynamics codes in terms of robustness and capabilities have

contributed to the gradual shift to formalized design optimization. In general, the optimiza-

tion approaches that have been pursued can be broken into two broad categories: on-line,

direct insertion approaches in which the CFD simulation serves as a flmction call inside of

the optinfization routine, and off-line, surrogate approaches in which the CFD simulation

is used to construct simplified input-output models that are then used in the formal opti-

mization routines. Each approach has associated advantages and drawbacks that make the

choice between which is best problem dependent.

The primary advantage to on-line optimization strategies is that they can handle prob-

lems with a large number of input (design) variables very efficiently. Optimization methods

are typically gradient based, and restricted to local searches, which reduces the effective

dimension of the problem to that of the low-dimensional manifold traversed during the

optinfization process. Issues as to whether a local or global optimal point is achieved at

the end of the process remain, but at the least, the local searches can be accomplished with

18



a moderatenunlberof appealsto tile analysisevenfor problemswith very large(in terms
of independentinputs) problems.An additionaladvantage,in tile contextof the compari-
son between on-line and off-line strategies, is that upon completion of the on-line design

optimization, a true optimal point is obtained.

The biggest drawback to on-line optimization approaches is the inordinate amount of

CPU time that they usually require. The underlying analysis codes are often very expen-

sive, requiring oll the order of hours of CPU time for a single analysis case. Not only is the

computational time inordinately large, it is very difficult to know a priori how many sim-

ulation evaluations will be required by the optimizer, making accurate resource budgeting

impossible. Scenarios in which computational resources are exhausted before a meaning-

ful design is obtained can be easily envisioned. Furthermore, as more is learned about

the design during its evolution, goals and specifications often need to be modified as well.

Changes in design parameters require an entirely new set of simulation analyses to perform

the requisite design optimization update. The large computational cost of tile on-line tech-

niques greatly reduces the flexibility of the design process and makes interactivity out of

the question. Secondarily, integration of the analysis code with tile optimizatiou routine

can be difficult, especially for multidisciplinary optimization applications, irregularities in

tile analysis response can cause convergence problems, and finallv, the incorporation of data

fronl outside sources is difficult.

Off-line. surrogate optimization approaches offer a number of advantages that directly

address the disadvantages of on-line optimization. First. by design, tile input-output sur-

rogates are trivial to evahlate, ensuring that the optimization process can be conlpleted in a

reasonatfle amount of tinle and global optimal points can be obtained. The computational

burden is placed on the construction of the int)ut-output surrogates which occurs prior to

any optinfization. Because surrogate construction is performed off-line, and because the

cost of a single analysis can be accurately estimated, available resources can be precisely

budgeted. Design goals can be changed, and new optimal points obtained, throughout the

process, and interactivity is preserved. Integration is greatly sinlplified as all information is

contained in a simplified input-output function, smoothness can be enforced on the surro-

gates, and data from outside sources is readily incorporated into the surrogate construction

process.

As already stated, the primary drawback to approximate optimization strategies is a

consequence of the surrogate-for-sinmlation error. The construction of surrogates in high

dimension input spaces is difficult, and as will be shown in Chapter 4. design predictability

deteriorates rapidly with increased input dimension. The validation and a posteriori error

analysis stages of the surrogate franlework seek to address the errors that are incurred when

optimizing with respect to a simplified model as opposed to the high-fidelity analysis.
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1.2.1 Approximate Optimization Techniques

Approximateoptimizationtechniqueshavebeenpursuedin widerangeof optimizationcon-

texts [3]. Centralto the notionof approximateoptimizationis that a (typically)expensive
analysisrepresentsthe truth. Direct insertionof the analysiscodeinto the optimization
routineis prohibitedbythe highcostassociatedwith eachappealto theanalysisanda sim-
plifiedmodel(asurrogate)is typically usedinplaceof theanalysis.Theonlyrequirementis
that thesurrogateapproximatethe relevantinput-output relationshipsof theanalysis.An
obviousapproachis to sampletheanalysisat asetof input points,obtainthecorresponding
outputs,and forma responsesurface[10].The responsesurfaceservesasa simulationsur-
rogatein theoptimization[21,67].Thesurrogatescanalsobe lowerfidelity,lessexpensive
simulations.Variable-complexity,responsesurfacestrategies[32]incorporatea hierarchy
of approximationsinto the optimizationprocess.

The distinction that is madebetweenthe high-fidelity analysisand the simplifiedap-
proximationcanbemademoregeneral.Forexample,anexperimentmayserveasthetruth
anda simplifiedinput-output modelwouldbe the surrogate.An applicationof this type
hasbeenexaminedin Chapter 6 and is also reported in [54].

1.2.2 Nonparametric-Validated Surrogate-Based Optimization

The key feature that is lacking in many approximate optimization strategies is a rigorous.

well-iutegrated means for error estimation. Post evaluation of the surrogate-predicted

designs is widely used and provides the requisite information to determine how a design

actually performs. However, many times even a single simulation evaluation will destroy

the interactivity of the design process. In situations in which several designs are selected,

the cost of appealing to the analysis for each design become prohibitive. Also, in many

situations the analysis may not be readily available during the design phase (certainly the

case for the experimental optimization problem in Chapter 6). Finally, while post evaluation

does inform the designer as to how the selected point performs, it provides no guidance as

to what should be done if design goals are not met and does not give any information as

to how nearby points perform. Post evaluation does not address how surrogate-predicted

optimal designs relate to true optimal designs.

The nonparametric-validated surrogate framework seeks to address the surrogate-for-

simulation error. The baseline framework [77, 79] can be broken into three steps: (1)

Off-line surrogate construction and validation. (2) Surrogate-based design optimization.

(3) A posteriori error analysis. The framework can accept and assess any combination of

surrogate and truth simulation (or experiment), and is valid regardless of the approximation

quality of the surrogate. The results are rigorous, based only on verifiable assumptions, and

require no additional parameters which typically must be estimated. Additionally, the error
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estimatesapply to the specific design (or region near the design) and precisely quantify the

response. By contrast, root-mean-square errors used in the context of response surfaces

[10] provide an assessment of the overall surrogate approximation accuracy but can not be

easily applied to analysis of surrogate-predicted optimal designs.

he baseline surrogate framework was first developed by [77, 79] for non-noisy simula-

tions. It has been extended to the analysis of simulations with noisy outputs [78, 77] ill

which the output error is symmetric and unbounded. The original, baseline framework

has been extended to a more general, scaled-error formulation for multiple outputs [57]

and more sophisticated elemental, sequential, and adaptive techniques have been developed

as well [55, 56]. Finally, surrogate methods have been coupled with Pareto analysis for

problems with multiple, competing performance goals [36, 37].

The surrogate methods have been applied to a wide range of problems. Tile eddy-

promoter heat exchanger that is examined in Chapters 2--5 has also served as an illustrative

problem in [36, 77, 79]. The baseline surrogate framework has been used to optimize the

profile of axisymmetric bodies of revolution in Stokes flow [55. 56, 57]. The noisy output

formulation has been applied to conduction in random media [78.77] and the elemental and

sequential/adaptive techniques have been applied to the conduction problem of a composite

[55] and design of trapezoidal ducts [56].

In this thesis, the baseline surrogate framework with error scaling, given in [57] is first

applied to the eddy-promoter heat exchanger design problem that is characterized by' two

performance metrics. The performance metrics are functions of outputs from the simulation

as well as explicitly of one of the design inputs. The surrogate framework has been extended

to assess a general two output, two performance metric problem in which the sinmlation

outputs are validated. By validating the outputs instead of the performance metrics, an

additional level of flexibility is afforded the designer in that the validated output can be used

in later design studies with modified performance metrics. A distinction is made between

the inputs which are modeled to construct the Output surrogates, and those for which the

performance metric response is known analytically. By separating the design inputs in

this way, the greatest advantage can be taken of what is known analytically. The surrogate

theory has also been extended to assess the error on a design point randomly drawn near the

surrogate predicted optimal design. The original surrogate framework made an assessment

of the surrogate error incurred for regions of points near the surrogate-predicted optimal

point.

Second, because the eddy-promoter problem is characterized by two, competing perfor-

mance metrics, and because the output surrogates and hence the performance metrics are

very inexpensive to evaluate, a Pareto formulation of the problem is pursued. An extremely

valuable synergy between the Pareto analysis and the surrogate methods has been identified

[36] in previous work. In high input dimensions, the predictability results of the surrogate
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frameworkbecomeverypoor. To alleviatethe lossin predictability,a Paretoanalysisis
pursuedwhichreducesthe effectivedimensionof the problemfrom the numberof inputs
to one lessthan the numberof performancemetrics. For the two performancemetrics
eddy-promoterproblem,the Paretoanalysisreducestheoptimizationproblemto that of a

singleparameterand sacrificesvery little generalityin theprocess.A fine-grainedPareto
analysisof theeddy-promoterproblemusingthe sinmlationis totally out of the question
and asurrogatestrategyis necessaryto maketheproblemtractable.

Finally, in Chapter6, the baselinesurrogateframeworkis appliedto the experimental
optimizationof the three-elementairfoil. Tile experimentis assumedto be deterministic,
andthe non-noisyformulationis used.

1.3 Shape Optimization

The eddy-promoter, heat exchanger that serves as tile central example for tile majority

of this thesis falls into the wide class of shape optimization problems [63, 65]. Shape

optimization problems are present in most engineering disciplines. Tile general structural

design problem of determining the optimal truss is one such problem. For the truss problem,

the thickness, length, positions, and possibly the existence of the various components must

be determined and serve as inputs. Numerous shape problems can be found in the field

aerodynamics. The optimization of a wing (both planform and the cross-sectional airfoil

shape) to achieve desired lift, drag, and stall characteristics is frequently considered and

of critical importance for aircraft design. The design of a wind-tunnel nozzle contour to

achieve a prescribed flow profile in the test section is another example df shape optimization.

1.3.1 Topology

An important consideration in some shape optimization problems is that of topology. In

truss problems [6], not only do elements need to be sized in terms of thickuesses and lengths,

but connectivities and existence must also be considered. This extends truss optimization

from simply that of sizing to include topology of the truss components as well. Several

approaches to topology optimization have been demonstrated on structural optimization

problems. The first approach is the ground structure method in which a given set of

connections is allowed between a fixed set of nodes, and the problem is posed as a continuous

optimization problem in which sizes can go to zero. Zero sized truss components imply no

connection between the two nodes [4]. This approach is restrictive in that the connectivity

(or the family of allowable connectivities) is assumed at the outset.

The second approach to topology optimization, homogenization methods [4, 5, 16, 72],

seeks to treat the problem in a more unified, pseudo-continuous sense. In a homogenization

formulation, the distribution of a material property (e.g. modulus or density) serves as the
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designvariable,and thedesignis optimizedfor agivenobjective. Regions of the structure

in which the value of the material property falls below a given cutoff are assumed to be

voids in the structure. Because an underlying mesh is required, the resulting truss nmst

often times %leaned up" to smooth boundaries. The post-optimization smoothing that is

required calls into question the actual optimality of the resulting structure.

A third strategy used to find the optimal topology of a structure, zero-one methods [1,

29], discretizes the solution domain into a a mesh of points and each point is systematically

turned %n" and :'off" until an optimum is achieved. The problem is thus reduced to the

combinatorial optimization problem of finding the best set of material points that satisfy

the constraints and minimizes the objective.

While such treatments of topology optimization have been effective in many instances for

solid mechanics applications, they are not directly applicable to fluid problems and are still

more unsuitable for surrogate-optimization approaches. Topology is an important consid-

eration, however, for some classes of fluid problems and should therefore not be neglected.

The particular application explored in this thesis, the eddy-promoter heat exchanger, is

one example of a problem that can benefit greatly from a unified treatment of multiple

topologies. In particular, situations in which two bodies may favorably interact, and which

may be more efficient than single body configurations, can be easily envisioned.

None of the strategies pursued for the structural topology optimization are directly rel-

evant or applicable to the eddy-promoter problem. Homogenization techniques do not have

an analogous extension to fluid problems that is l)hysically reasonable. The discrete zero one

methods could be applied but suffer from several drawbacks. First. for tile very expensive

analysis that is used for the eddy-promoter problem, the combinatorial optimization prob-

lem would be prohibitively expensive. A sufficiently refined discretization of the solution

domain would make the problem still more intractable. Second. the zero-one techniques

are not at all applicable to the surrogate techniques (e.g. a smooth input-output function

can not be fit through a 20 x 20 mesh of discrete zero-one inputs) that are required to make

the problem computationally possible. Third, and finally, the resulting optimal shapes are

non-smooth and are likely not optimal in the sense of viscous dissipation. Post-processing

of the optimal shapes to smooth the surfaces could be used. but relationship between the

smoothed bodies and the true optimizers is unknown. The incompatibilities between the

structural topology methods described above and the eddy-promoter design problem have

motivated tile development of a level-set based geometry description.

1.3.2 Level Set Geometry Description

The approach that has been developed to describe tile geometry sacrifices the generality of

the homogenization and zero-one techniques, but is more relevant to the eddy-promoter

class of fluid problems. It is a level-set based technique and has several advantages. First,
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it providesanunified(albeit restricted)approachto topologyoptimizationin that noaddi-
tional logicisneededto distinguishbetweensingleor multiplebodyconfigurations.Second,
it is directly applicableto surrogateapproachesas it is efficientin termsof the numberof
inputs that are requiredand,most importantly, the input-output functionis continuous
acrossa topologychange.Third, the familyof shapesthat aredescribedby the level-set
methodarea supersetof the cylindrical family studiedelsewhere[40,77, 79] making the

results directly relevant to previous studies. Finally, it can be extended to more complex

geometries and topologies in a rational way. The geometry is defined using superposi-

tion principles and a core, generating function. By systematically adding core functions to

the overall shape flmction, richer families of bodies can be defined, and a wider class of

topologies can be considered. For the problem examined here, two distinct topologies are

considered: single-body and two-body configurations.

Level-set methods have been used previously to describe the domain in shape opti-

mization problems [12, 80]. More recently, level-set methods have been widely applied to

problems that involve propagating surfaces or interfaces [53]. This includes problems such

as flame propagation and material boundary evolution. Level set methods have also been

applied to character recognition (the determination of true character boundaries) [52] and

image enhancement in the presence of noise. One of the principle strengths of level-set

methods is their ability to handle difficult geometries including sharp corners, cusps, and

topological changes [13]. The specific method used to describe the geometries is given in

Section 2.5.

1.4 Overview of the Thesis

In the first chapter of this thesis, the eddy-promoter problem is described. The configu-

rations, governing equations, shapes descriptions and summary of the fundamental design

inputs, outputs, and performance metrics are included. In the second chapter, the numer-

ical solution techniques used to solve the governing equations are detailed. The baseline

surrogate framework is applied to the eddy-promoter problem in the third chapter and the

Pareto surrogate approach is applied to the eddy-promoter problem in the fourth chapter.

At the end of the fourth chapter, key features of the baseline and Pareto approaches are

compared and contrasted. In the fourth chapter, the baseline surrogate approach is applied

to the experimental optimization of a three element airfoil. Finally, some concluding re-

marks are given in the final chapter followed by appendices that contain surrogate proofs,

details of the numerical implementation, and the surrogate input-output functions.
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Chapter 2

Eddy-Promoter Heat Exchanger

A natural byproduct of almost all mechanical processes is unwanted heat. Tile amount of

work in the field of heat transfer prol)lems in general has reached such a critical mass that

reviews of heat transfer reviews are available [19]. Additionally, heat exchangers are present

in almost all mechanical systems and have received a great deal of attention as well [25.76].

The requirement that the heat be efficiently dissipated to preserve mechanical integrity

without incurring undue performance penalties has helped to support a very' active field of

research focused on heat transfer enhancenlent.

One api)roach to the removal of heat from a surface is through a laminar flow heat

exchanger. In such an exchanger, heat is transfered from a generation source into a fluid

medium and carried downstream. A number of ways exist to enhance the heat transfer away

from the wall of the channel and into tile fluid medium. These include active mechanisms

such as oscillatory pumping of the fluid or passive enhancenmnt in which wall contouring or

flow obstacles are introduced into the fluid channel to increase mixing. For all of the meth-

ods. the intent is to increase tile convective heat transfer by increasing the mass transport

away from the wall.

The heat exchanger geometry introduced in this chapter, and used as an example in

Chapters 4 and 5. uses a passive enhancenmnt strategy in which flow obstacles are intro-

duced to lower the critical Reynolds number. The exchanger, as defined here. could be a

subsystem in a nmch larger industrial heat exchanger device or could be a very close approx-

imation to a design that might be used in a space-limited application such as the cooling

of electronic devices. The enhancement geometries studied here take as a departure point

work performed earlier in which cylindrical inclusions (eddy-promoters) were studied [41].

The cylindrical eddy-promoters greatly reduce the Reynolds number at which flow instabil-

ities develop. The onset of instabilities have been observed at Reynolds numbers as low as

125 when the eddy-promoters are present [40]. The presence of the eddy-promoter inclu-

sions greatly increases the temperature convection in the channel and therefore, improves

the heat transfer. The family of eddy-promoter geometries studied here include cylindrical

25



y!

V/ :

L !

Figure 2-1: General geometry for the heat-exchanger configuration.

inclusions, oblong inclusions at various orientations, and two body configurations. A uni-

fied geometry description has been developed to describe the full family of geometries that

preserves continuity in the input-output functions. The geometry description is based on

level-set methods and is described in Section 2.5.

In this Chapter, the general configuration and design goals for the eddy-promoter heat

exchanger problem are presented. A descrit)tion of the heat exchanger configuration and

the simplifications made for later computations are presented first. Second, the governing

equations and the scalings that are made to reduce the problem to nondimensional form

are described. Third, the engineering goals for the problem are discussed and the nondi-

mensional formulation for the design prol)lcm are given. Fourth. the Pareto formulation is

presented followed by the level-set based geometry description. Finally, the reduced for-

mulation for the eddy-promoter design problem is presented in terms of the design inputs.

design spaces, outputs, and performance metrics.

2.1 Physical Problem

The general configuration of the heat exchanger is given in Figure 2-1. The flow is from left

to right and is driven by an applied pressure gradient zP'. The channel length is L _ and

the channel half height is Hq The temperature of the fluid at the inflow is Tin, the wall

temperature at the outlet is T _ and the channel average velocity V _ is

1 f2H' iV' = -- / u dy, (2.1)
2H _ J0

where u _ is the z_-component of the vector velocity u r = (u _, vt). There is is a uniform heat

flux q" through the lower wall and the upper wall is assumed to be insulated. The objective

is to transfer as much heat as possible through the lower wall. into the fluid stream, and

out of the heat exchanger channel.

A number of methods exist to effect better transfer of heat into the fluid medium. These

include unsteady pumping, grooved walls, and the inclusion of periodically-spaced, cylin-
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Figure 2-2: General geometry eddy-promoter, heat-exchanger coufiguration (top) showing

one periodicity cell (bottom).

drical obstructions referred to as eddy-promoters. In this work. the focus will be exclusively

on the eddy-promoter configurations, a segment of which is shown at the top of Figure 2-2.

The periodicity' spacing (the length between inclusions) for the eddy-promoters is l'. The

primary effect that the eddy-promoters have on the flow is to trip instabilities at greatly

reduced Reynolds numbers than observed for plane channel flows. Two-dimensional. lin-

ear instabilities are observed in channel flows at Reynolds numbers based on the channel

half height H' of approximately 5500 [17, 60]. For properly placed and sized cylindrical

eddy-promoters, the onset of two-dimensional flow instabilities have been observed numer-

ically and experimentally at Reynolds numbers as low as 125 [40, 41]. The unsteady flow

increases the convective transfer of heat away from the wall and increases the efficiency of

the exchanger.

As already stated, the heat transfer can be increased by the inclusion of obstacles in the

flow to induce instabilities at lower Reynolds numbers. While the periodically spaced flow

obstacles do increase the heat transfer, the increase comes at the cost of a higher pressure

drop and greater viscous dissipation. The result of the higher pressure drop is that a more

powerful fluid pump must be employed, increasing the cost and complexity of the exchanger.

Additionally, excessive viscous dissipation, pressure forces, and shear stresses produce larger

structural loads that must be balanced by stronger materials to avoid fatigue failures.

The effectiveness of the exchanger can be quantified by two characteristics; how much

heat it can transfer away from the hot wall and how much effort is required to accomplish the
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transfer.The twoquantitiesthat characterizetheexchangerare,in mostinstances,at odds
with eachother. Clearly,the heatexchangerdesignis an exampleof a thermal-hydraulic
trade-offproblem. In words,the goalof the heat-exchangerproblemis to maximizethe
heattransferedinto the fluid mediumandcarrieddownstreamwhileholdingthe required
pumpingpoweras lowaspossible.Thesecompetinggoalsform the trade-offproblem.

2.2 Governing Equations

The total exchanger length L' is assumed to be such that the flow is fully developed in

x'. Additionally, the flow is assumed to be independent of the spanwise coordinate and is

modeled as a two-dimensional problem.. Furthermore, for a periodicity spacing, l', between

eddy-promoter inclusions that is also sufficiently long, the fluid solution will be also be l'-

periodic. With these two assumptions, the full exchanger length can be modeled with a

single periodicity cell that enforces periodic boundary conditions at each end.

The flow solution for the full channel shown in Figure 2-2 is modeled by a single peri-

odicity cell as depicted in the lower half of Figure 2-2. The fluid flow solution is governed

by the incompressible Navier-Stokes equations and it is assumed that all fluid properties

are held constant and are independent of the fluid temperature. The equations governing

the fluid flow. in dimensional form are

cqu'
p-_ + pu'- _"u' -/_V'2u ' + V'rr' = 0, (2.2)

V'.u' =0. (2.3)

where p is the fluid density, # is the fluid viscosity, and _' is the pressure. No-slip boundary

conditions are enforced on the velocity along solid walls

u'= 0 on az_P', _-_ar_EP',az_ P', (2.4)

and left-right periodicity is enforced on the flow velocity and derivatives

0 ? _1".,u'(z' ,y, j u'(z' " ' ""= = -----L,y,_ ), (2.5)

!u,, (z' = 0, y', t') = u', (z' = t', v', t'),

I ! !

uy, (x' = 0, y', t') = u u, (x = l', y', t').

The pressure rr'(x', t') has the form

Ap'

'(x', t') = p'(x', t') E-_'

(2.6)

(2.7)

(2.8)
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where x' = (J, f) is the vector of coordinate directions in two-dimensions and -:4LF2 is the

pressure gradient that drives the flow. The periodic part of the pressure, f(x', g), satisfies

p'(z' = o, y'. t') = p(z' = t, y', t'). (2.9)

The temperature is governed by the scalar, convection-diffusion equation

0T' V'. = (2.10)-- + (u'T') av'_r ',
cgt'

where T' is the full temperature solution and o = _ is the thermal diffusivitv. For this
pCp

equation to hold, it is assumed that tile thermal conductivity, _, is independent of the

teInperature, that diffusion can be neglected, and that there is no internal heat generation.

The boundary conditions for the temperature are the prescribed mfiform heat flux through

the lower wall

_;V'T'. fi = q" on cgD_ p', (2.11)

and zero heat flux (insulating surfaces) through the eddy-promoter body surface and the

upper wall

_V'T' . fi = 0 on 077_ p'. ___B79cp'. (2.12)

The heat flux q" is assumed positive for heat transfer into the domain and fi is the trait

outward nornlal.

The full temperature. T', is decomposed into two components

T'(x', t') = 0'(x', t') + 7'z'. (2.13)

The linear part of Equation 2.13 is the most general form for which there is a unique solution

such that O'(x'. t') satisfies periodicity [30]

= =l r t"O'(z' O,y',t') = O'(x' ,y, ;. (2.i4)

The derivation of the coefficient 7' is given below.

The governing equation for 0' is obtained by substituting Equation 2.13 into the tem-

perature equation 2.10

00' V' . = aV'20 '-- + (u'0') - 7'u'el, (2.15)
(gt_

where el = (1, 0) is the unit vector in the z-direction. The boundary conditions on 0' are

obtained sinfilarly and are

_V'0'. fi = q" on 0V_ p', (2.16)

_:V'O'. fi -_7'_i on 079_ p', c')'DEP'----U. ! (2.17)
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wherenl is the component of the unit outward normal vector, fi = (n1,_2), in the x'-

direction.

Because solution domain _ )EPr is a single periodicity cell of the full heat exchanger shown

at the top of Figure 2-2, the coefficient 3'' in Equation 2.13 must be set such that heat does

not build up in the channel, on average, over time scales of the order of period of the

steady-periodic state. To determine the constant coefficient 3,', the temperature Equation

2.10 is integrated over the solution domain :DFP'

_ /vEp, O' dx' = - /vEp, V" [u'(O' + 3`'x)] dx' + /_Ep, aV'_O' dx'. (2.18)

The first integral on the right hand side of Equation 2.18 is expanded, and Green's theorem

is applied to obtain

The requirement that T r be bounded as t -+ _c is equivalent to enforcing that the left

hand side of Equation 2.19 be zero when averaged over a length of time on the order of the

solution period. The first term oil the right hand side of Equation 2.19 goes to zero by the

velocity boundary condition given in Equation 2.4 and the second term on the right hand

side can be rewritten in terms of the flow rate

Q'(t) = _,/z_Ep, u' dx'. (2.20)

For the problem examined here, the flow rate is fixed and Q'(t) = Q'. The expression for

3" is obtained by requiring that the remaining terms satisfy Equation 2.19 which can be

rewritten as

3`'l'O' = a[ v'o' . fidl'. (2.21)
Jo _EP I

The boundary condition contributions from the body and upper wall in Equation 2.17 are

substituted into the right hand side of Equation 2.21. The contribution from the body is

zero because of integration around the closed contour 0Z_EP and the contribution along the

upper wall is zero because nlla_P = 0. The boundary condition contribution from the

lower wall in Equation 2.16 is substituted into Equation 2.21 to obtain

fO q"= -- dl, (2.22)3`'l'Q' a vF' _

which is solved for 7' to get
o_q'

3` 2_H'V" (2.23)

where the relation Q' = H'V' has been substituted, and q' = l'q" is the integrated heat flux
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into the domain7)EPthroughtile lowerwall 0"D EP.

To this point, all quantities and equations have been given in dimensional form. To

nondimensionalize the governing equations, and to simplify and generalize the solution

process, the following scales are used. All lengths are scaled by the dimensional channel

half-height H' resulting in a nondimensional channel height of H = 2. The velocities are

scaled by 3V' which has been selected so that the nondimensional centerline velocity for

plane Poiseuille flow is unity. The dimensional time is scaled by the ratio of the length scale

to the velocity scale a-rr2H'and the temperature is scaled by, q"H',_. The scales are summarized

below.

3 _7!Velocity scale:

Length scale: H'
2H'

Time scale: 7

Temperature scale:

The relative periodicity length l' and the full channel length L' are scaled by H' and resulting

nondimensional lengths are

respectively.

l' L'
l = --. L (9 24)H' -"

Tile scalings listed above are applied to the governing equations 2.2. 2.3. 2.15 and to

the associated boundary conditions 2.4--2.7, 2.14. 2.16. and 2.17. The resulting equations

are simplified to obtain the full set of nondimensional governing equations and boundary

conditions. The velocity and pressure are governed by the incompressible. Navier-Stokes

and continuity equations

0-7 + u. XTu - V2u + Up = f(t),

_7"U _ 0,

with boundary conditions

u 0 on OD EP, EP__= ODu, cqDEP., (2.27)

u(z = 0, y, t) = u(z = l. ,a,t).

u_(z = 0, y,t) = u_(z = l,y,t).

uy(x = O,y,t) = u_(x = l,y.t).

The governing equation for the temperature reduces to

00 1
0-7 + u. (V0) - RePrV20 - 7ut,

(2.28)

(2.29)

(2.30)

(2.31)
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with boundaryconditions
V0. fi = 1- 3'nl on O_ )EP,

_0-n.= --_1 on 0D EP., o_-DuEP,

0(z = 0, y, t) = 0(z = t, y, t).

0,(z = 0, y, t) = 0x(z = l, y, t).

O_(x = O,y,t) = Oy(x = l,y,t).

The Reynolds and Prantl numbers are

3V'H'
Re--

/]
r'}_

2b' ' r-r = --,

and the Prantl number is held fixed at unity. Pr = 1, for all cases presented here.

nondimensional velocity, pressure, and temperature are

2u' p' 0'
u = _, P- 2' and 0-

respectively and the nomlinmnsional coefficient. 7, becomes

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)

The

(2.38)

3

7- 4RePr" (2.39)

Tile dimensional pressure rr' has been expanded according to Equation 2.8. This yields

a time-dependent forcing term on the right hand side of the z-component of Equation 2.25

2xP'

f(t) = L (2.40)
p V'

where the full vector forcing term in Equation 2.25 is f(t) = (f(t), 0). The forcing term is the

nondimensional pressure drop required to drive the flow at the prescribed Reynolds number.
3 t

To be consistent with the velocity scaling 7V, the nondimensional, time dependent, forcing

term f(t) is set such that nondimensional flowrate given by

Z'Q = u(z, y, t) dy, (2.41)

is a constant Q = 4. The numerical implementation that has been used to to achieve the

prescribed flow rate is detailed in Section 3.2.1.
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2.3 Engineering Goals

The eddy-promoter heat exchanger design problem can be classified as a multicriteria design

problem. The two criteria that characterize the design goals are the pumping power required

to maintain the prescribed flowrate and the temperature rise along the lower wall. The

two design criteria for this problem result in a classic trade-off problem in that design

improvements, reduced pumping power and lower temperature rise, are competing goals

and in many instances run counter to each other [66]. From the designer's point of view,

it is best to postpone how to precisely balance and prioritize the two criterion until as late

in the design process as possible. This will increase tile flexibility and allow the designer to

learn as much as possible before making decisions.

To accomplish the design goals, a number og md_.ependent variables can be adjusted. Tile

independent variables are referred to as design (or input) variables. Of the full set of design

variables, a subset consists of the vector of parameters Z_p that specify" the geometric

configuration of the eddy-promoter inclusions shown shaded in the lower part of Figure

2-2. The vector Z_F, includes the parameters that describe the profile of the body surface

as well as its placement in tile channel. Additional design variables are the height of the

channel configuration H', and the average fluid velocity V' defined in Equation 2.1. The

total channel length L' is fixed as it is assumed to be set based on the specific application.

Tile relative spacing between each eddy t)romoter, l'. can also serve as a design input but.

for the remainder of the work presented here. it is also assumed fixed and is set such that

l'
l - H' -- 6.666. The value l = 6.666 matches that used in previous studies and has been

shown to be a valid"lmigth for the existence of/-periodic solutions [40]. The fluid properties

p, r,, n, and a are all assumed fixed. The full. dimensional design input vector is

Z ! _ !(ZEp. V', H'). (2.42)

As stated in the first paragraph of this section, the two criteria that characterize the

design are the dimensional pumping power required to achieve a prescribed average flow

velocity V' and the temperature rise along the lower wall. The pumping power is given as

9v)(Z ') = AP'V'H', (2.43)

and is dependent on the input design vector Z. The temperature rise is broken into two

components and is

= 7% - T',, ,

where T' is the temperature at the outlet of the heat exchanger, and T'i = T',(z = 0) is

the mixed mean temperature at the inlet of the exchanger. The mixed mean temperature
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is definedas
i-- < u'(x. t)T'(x, t) > dy. (2.45)

2H'V' J0

The brackets < • > in Equation 2.45 indicate a temporal average over a sufficiently long

period of time to obtain the mean of the time-varying, steady-periodic solutions.

To nondimensionalize the problem, it is important to scale the optimization objectives

by quantities that do not change as the design changes. This requirement simplifies the

solution process but it also restricts the possible nondimensionalizations. The independent

variables are scaled as well. The ctlannel half-height H' is scaled by the total channel length

L', which is fixed. For convenience, the inverse of the scaled channel half-imight

L'

'/L = _7, (2.46)

serves as the design variable. The eddy-promoter configuration variables are scaled relative

to the channel half-height

ZEp- Z_p
g' (2.47)

_2Lt "t

The average velocity V r is scaled by _ which gives the Reynolds number. Re - 3_ H'2v . as

a design variable. The full set of nondimensional design variables is then given as

P furl = (ZEp, Re. r?L). (2.48)

To scale the telnperature objective, the temperature rise gT' is first expanded as

qtl L'
dT' - + _/_' (2.49)

pcvV'H'

where &--T' = < T'_(x) -T'.(x) > and the over-bar indicates a spatial average in the z-

direction over the length of the spacing between eddy-promoters, l'. The first term on the

right hand side of Equation 2.49 corresponds to the mixed mean temperature rise along

the exchanger length due to the uniform heat flux q" and the second term is the heat that

has been transfered into the fluid medium. Scaling the temperature rise by q"L' gives tile

desired result for the objective

dT' 1 1

O(Z_p. Re, L) = _ - RePr + rlLNu(ZEp , Re) (2.50)
tg

where the Nusselt number is given by

1 1
Nu(ZEp , Re) = = = (2.51)

< Tin(z) - T_.(x) > AT

and is the inverse of the nondimensional, temporally- and spatially-averaged difference
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betweenthe mixed-meanandwall temperatures.
pb, 3

The pumping power, 5r},(Z'), is scaled by Z-n-. The nondimensional pumping power is

ApIVrH'L r2
- (2.52)

q2(ZEp, Re, rlL ) pu3

Introducing the nondimensional friction factor

__p'

¢o(Zsp, Re) - c' .. (2.53)
p (_}V') 2

and substituting tile expression into Equation 2.52 gives

ff2(ZEp, Re, rlL) = _b0(ZEp, Re)q_ Re 3. (2.54)

where the nondimensional friction factor in Equation 2.53 is identically equal to the tempo-

rally averaged, pressure forcing term oi1 the right hand side of Equation 2.25. The pressure

forcing term is given in Equation 2.40 and the output form is

_0(ZEp,Re) =< f(t: ZEp. Re) > . (2.55)

To this point, no preference as to how to treat the two design criteria, O(ZEp, Re. IlL )

and qJ(ZEp. Re, tlL). has been stated. The precise application and engineering constraints

(e.g. available pumps, linfits on temperature rise. etc.) would need to be known to de-

termine the best formulation for the design problem. As an example, if the maximum

temperature rise along the lower wall of the exchanger must be limited (say due to oper-

ating temperature limits on electrical components), the problem could be formulated as a

constrained optimization problem

min _(ZEp , Re. rlL) (2.56)
{ Z E p ,Re,rlL }

subject to

O(ZEP, Re,_?L) <_ "0, (2.57)

where 0 is the upper-bound constraint on the temperature performance criterion. Con-

versely, the problem could be formulated based on the maximum pumping power that can

be supplied by the fluid pump. In that case, the two performance metrics in Equations 2.56

and 2.57 would be reversed and the upper-bound constraint in Equation 2.57 would be set

based on the particular fluid pump. Ideally, it is best to put off such decisions until as late

in the design process as possible to preserve generality. The design strategy that is used

for the eddy-promoter problem combines the formulation presented in Section 2.4 and the
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surrogatetechniquespresentedin Chapters4 and5. The resultisanextremelyflexiblede-
signenvironmentthat addressesbothconstrainedoptimizationproblemsmentionedabove
aswellasa wideclassof moregeneralformulations.

Regardlessof the problemformulationthat is ultimatelyselected,uponsolutionof the
nondimensionaloptimizationproblem,the physicalheatexchangerquantitiesmust beex-
tractedfrom thenondimensionalresults.Thestepsarea.sfollows:1)Giventhedimensional
lengthof the heat-exchangerchannelL _, H _ is determined from the optimization solution

for r/L. 2) With H' known, the dimensional geometric configuration parameters Z_p can

be obtained. 3) The Reynolds number implies (for fixed fluid quantities) the optimal V _

given H t.

2.4 Optimization Problem - Pareto Formulation

The notion of Pareto-Optimality (PO) has its origins in tile field of economics. The analysis

was originally targeted towards the equilibrium conditions in an economy in which gains

made by one consumer would be at the expense of at least one other consumer. Tile

equilibrium point was first referred to by Edgeworth in 1881 [20] and tile concept was

refined and expanded by Pareto [59]. Tile application of Pareto analysis to engineering

problems has only occurred recently, however.

There are several advantages to pursuing a Pareto analysis of multicriteria optimization

problems when feasible. First. it can be shown that a wide class of nmlticriteria optimization

formulations have a solution that is also PO. This is important in that by pursuing a Pareto

analysis, one loses very little generality. The second advantage to a Pareto approach lies

in the engineering relevance of the results. For a two-criteria optimization problem, the

resulting family of PO solutions map to a curve in the two-dimensional criterion-space that

provides a designer with the capability to rapidly assess trade-offs and to determine the

impact of changing design goals interactively. Third. PO analysis has a beneficial impact on

the practicality of the error estimates provided by the surrogate framework. This is a direct

result of the reduction in effective dimension that is realized by the Pareto analysis. The

result is that for a problem with a high input dimension (M), the dimension over which the

surrogates are validated is reduced to one less than the number of performance metrics that

characterize the design preferences, (K - 1). The input dimension reduction significantly

improves the predictability and is discussed in Chapter 4.

In this section, the general formulation for the Pareto-optimization problem is presented

first. Second, several classes of multiobjective problems that have solutions that are also

Pareto-optimal are presented and discussed. Third, the methods used to determine the full

set of Pareto-optimal solutions are described. Fourth, and finally, the generalization of the

Pareto formulation to an arbitrary number of objectives is briefly presented.
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2.4.1 Pareto-Optimal Solutions

Central to tile Paretoanalysisof a problemis tile notionthat the designercanarticulate

monotonicpreferencesoneachperformancemetric. For all of thediscussionof this section.
it will beassumedthat thereare two (K = 2) performancemetricsfor which lowervalues
correspondto better designs.Givena vector of designvariablesp E _ and the design

(or input) spacef_ C LRM, the two performance metrics are _I(P) = q_I(¢I(P),¢2(P),P) :

fl -+ IR and O2(P) = OI(¢t(P),¢2(P),P) : _ --+ /R. It is arbitrarily assumed that the

performance metrics are functions of the two outputs, ¢1(P) : 9- --+ _ and Ce(p) : fl -+/_,

as well as explicit functions of the input variables p.

To define the Pareto-optimal sets. the notion of an achievable set

A = {,s E 1R2 I 3 p E f_ s.t. _1(¢1(p), ¢_(p), p) <_ sl, q_2(¢_(p), c)=,(p), p) <_ .se}, (2.58)

is first introduced. The achievable set A is the the set of all possible output pairs s = (sl. s2)

for which there is an input point p E 9, that has correspondingly better performance metric

values. With the achievable set defined as above, the set of Pareto-optimal designs is

then the set of designs for which the performance metric values lie on the non-horizontal.

non-vertical boundary of A not at infinity. This boundary, denoted 0.4. is depicted on

the left in Figure 2-a as the solid line and is termed the Pareto-optimal output manifold.

The PO output manifold is also sometimes referred to as the efficient frontier [71] or the

trade-off curve [66]. The inverse map of the PO output manifold back to the input space

is determined from the performance metrics

£-a={pEg. 13sEOAs.t._l(Ol(p),¢_(p),p)=.sl,_2(¢l(p).¢,_(p).p)=_s,. }. (2.50)

and £.a C 9. is denoted the PO input manifold. The PO input manifold £.4 is shown as

solid lines on the right side of Figure 2-3 and the outline of the design space 9.. is shown as

a dashed line. Figure 2-3 depicts 0A and £.a as very well behaved, (K - 1)-dimensional

manifolds. There is no justification for such behavior in general, especially as regards £.a.

but for relatively smooth, well defined performance metrics it is reasonable to expect some

regularity.

The design optimization interest is in the designs described by input points, p*. that lie

on £A. p. E £.4. These design points can rightfully be called the "best" or most efficient

designs based on the performance metrics. This is illustrated by considering the input point

p' with the corresponding output pair (_1 (P'), q_(P')) ¢ 0.,4. For such a point, there always

exists a point p* E £.4 that has output pair (_I(P*), _-,(P*)) E OA and that satisfies either

_I(P*) -< _I(P') and _2(P*) < q_2(P'): (2.60)

37



_2(P)
A

P2 £A ,"

_I(P) Pl

Figure 2-3: A schematic the Pareto-optimal output (left) and input (right) manifolds.

or

_I(P') < _I(P') and q_2(P*) _< _2(P')- (2.61)

In words. Equations 2.60 and 2.61 indicate that for a point p' that is not PO, there will

always exist a point p* that performs at least as well in terms of tile first performance

metric _I_l(p') and improves upon second performance metric (b2(p') or (conversely) that

performs at least as well as q>2(P') but improves upon _I(P').

Finally, it is noted that the entire boundary of A does not correspond to PO designs.

From the discussion of the previous paragraph, it is obvious that designs that correspond

to horizontal or vertical segments of the boundary are not PO. The reason for this is that

for such designs, there will always be another design input point that improves on one of

the performance metrics without increasing the other. For all of the discussions of OA. and

the corresponding/2.4 it is assumed that all points that are not PO have been eliminated.

This has been suggested on the left side of Figure 2-3 by denoting OA as the solid line only.

2.4.2 Relationship to Other Multi-Objective Problems

The advantage of pursuing a Pareto analysis is that it is, in fact. a generalization of many

multi-objective problems in that solutions to the given multi-objective optimization prob-

lem, P,_[o, are Pareto optimah P._IO E /2"4. For example, the single performance metric

minimization problems,

p_ = arg min _1 (P), (2.62)
per2

and

P2 = arg rain _2(P),
pEfl

(2.63)
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both have solutions that lie on £A p_ E £A and p_ E [:.a. In fact, the performance metric

pairs that correspond to p_ and p_ lie at the extreme ends of ,4.

As a second example, if the objective is the weighted sum of the performance metrics,

(p(p) = alq_l(p) + a2_2(P), then

p" = arg

is PO as well and can be found on the PO input manifold £,a p, E £.4.

In general, for any non-decreasing functions _O(¢l(p), ¢2(P), P) and b(¢l(p), ¢2(P), P)

that are not explicitly functions of the input vector p, a solution to

p* = arg min _Pl (6/'I (P), _52(P), P)
pelt

(2.65)

subject to

b(_l (p), cP2(p), p) _ 0 (2.66)

will lie on tile PO input surface £.a. This generality in the PO solutions allows the designer

to eliminate uninteresting designs but ensures that sufficient flexibility' remains to change

the design goals as the design itself evolves. This flexibility is extremely important because

many tinles, precise goals can not be defined at the outset of the design process.

2.4.3 Determination of 0./4 and £.a

To find £A. tile multicriteria problem is reduced to a series of scalar problems parameterized

by w E IV = [0.1]. A min--max fornmlation for the scalar sub-optimization problems is

used as it is guarantees that non-convex portions of £.a are obtained [22, 14].

Given the scalarization parameter w E IV, the scalar problem

_(w) = arg _Ei_max(w_l(p), (1 --w)_2(p)), w E IV,
(2.67)

is solved for a sufficiently refined IV. The curve _(IV) (with segments corresponding hor-

izontal and vertical segments of the boundary of .4 removed) is the PO input surface £.a.

The corresponding PO output manifold is obtained from _(IV) and the performance metrics.

given by

0.4 = (_(_(1/Y)), _2(_(IV))). (2.68)

It is immediately obvious that it can be an extremely time consuming and difficult pro-

cess to find ((IV) to an adequately fine resolution for even moderately complex (expensive)

performance metrics, _I(P) and _52(p). Each solution to 2.67 is itself an optimization prob-

lem. The prohibitive cost of obtaining _(IV) is the primary reason why Pareto analysis is

not typically pursued for complex engineering problems.
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Notethat in this discussion,it isassumedthat the_(W) obtainedfromthescalarization
process(2.67)hasbeen"cleaned up" to remove duplicate points and horizontal and vertical

segments of the boundary of .2, that, by definition, are not PO.

2.4.4 Generalization to Arbitrary Output Dimension

The notion of Pareto-Optimal solutions can be extended to an arbitrary number of per-

formance metrics _t(P),..., q_K(P). For the K performance metrics (for all of which it is

assumed that lower is better) the PO output manifold is the (K - 1)-dimensional manifold

that represents the boundary of the achievable set .AK not at infinity. Here .AK is

A/¢ = {s E /RF" I 3 p E f_ s.t. _1(¢I(P), ¢2(P),P) _ sl,..., (I'h'(¢l(p), ¢'2(p), p) _< sK}.

(2.69)

In three dimensions, this can be visualized as the surface of the three-dimensional achievable

set volume ill the first quadrant that is "nearest" the origin.

In higher dimensions, the surfaces can not be easily visualized but can be described

with the rain-max scalarization process similar to 2.67 [35]. Given the K - 1 scalarization

parameters w = (wl,..., wK-1) E W/,'-I, where

h'-I }
,,_<1 , (2.70)

i=1

the PO input manifold can be found by solving

_(w) =argminmax wt_Pl(P),...,w/_-l_h'-l(p), 1- _ a,i _K(P) . wEl/Y/_-_l,
pE_ i=1

(2.71)

where the scalarization vector space is 1'_'_,-1 C [0.1] I'-1. As before, the PO output

manifold is given by

OAI,. = (2.72)

and finite-sized portions of 0.AA- for which at least one of the performance metrics is constant

have been assumed removed.

In practice, assuming very inexpensive performance metric functions, it may be possible

to obtain and manage the data required to visualize and sample a three criteria (K = 3)

Pareto analysis. As noted above, for a three criteria optimization problem, the PO output

manifold is a surface of a three-dimensional volume (the achievable set) and the PO input

manifold can be visualized versus the two scalarization parameters as surfaces. With a

sufficient amount of data, boundaries between disconnected subsets of L:"4 can be accurately

determined. For problems in which K > 3, the PO manifolds become very difficult to

visualize (volumetric manifolds in four-space for K = 4) and dimensionalization issues make
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it computationallydifficult to preciselydeterminethe boundariesbetweendisconnected
subsetsof EA. With these considerations in mind, it can be concluded that the Pareto

analysis is best suited for K = 2 problems and, possibly, could be useful for K = 3 problems.

Fortunately, a large number of problems of interest can be meaningfully expressed as two-

criteria optimization problems.

2.5 Eddy-Promoter Shape Description

The effectiveness of cylindrical eddy-promoters as heat transfer enhancement devices has

been studied extensively [40, 77, 79]. For the eddy-promoter optimization problem studied

here, the intent is to expand upon the the cylindrical family of designs that have been stud-

ied previously. It is important that the definition of the design space include cylindrical

geometries so that improvements to optimal cylindrical configurations can be identified. An-

other desire is for the design space to include topologically changing geometries: specifically

it should include single bodies as well as two-body configurations.

The motivation behind examining two-body configurations is the possibility that the

two bodies could favorably interact to improve the heat transfer beyond what is possible

with a single body. Tim inultiple-topology design space presents a particular challenge in

that the definition of the shape parameterization must be consistent and continuous with

respect to the outputs so that surrogates can be constructed.

In this work. a shape parameterization has been developed that describes a family

of geometries that is a superset of the cylindrical family studied previously. The shape

parameterization presented encompasses a richer set of single-body geometries than simply

circular cylinders, and includes two-body geometries as well. To accomplish this. a level-set

based shape description has been developed.

2.5.1 Level Set Methods - Shape Generation Example

To describe the geometry of the eddy promoters, ZEp , a level-set [80, 64] based approach has

been developed. Level-set methods have been applied to problems that involve propagating

surfaces or interfaces [53]. This includes problems such as flame propagation and material

boundary evolution. Level set methods have also been applied to character recognition

(the determination of true character boundaries) and image enhancement in the presence of

noise. One of the principle strengths of level-set methods is their ability to handle difficult

geometries including sharp corners, cusps, and topological changes [13].

In the general level-set based shape generation case. a domain of possible shape geome-

tries ftu C Nd in which the entire family of shape boundaries will lie is introduced where

d (= 2 or 3) is the dimension of the shapes to be generated. For the generation of two-

dimensional geometries (d = 2), a generating function _(x,w) : 9. u --+/R parameterized by
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Figure 2-4: _rlesh plots of the level-set generating function _(x.y;co) for co = 0.85 (left)

and co = 0.60 (right). The resulting, closed shape geometries are shown shaded below each

generating function.

the vector co = (col,..., co,\,._) E A is selected where tile Cartesian coordinate directions are

x = (x, y), the shape generation domain is m s C E_ 2, and the input parameter domain is

A C/R x_. The boundary of the shape geometry, /_,, is defined by the level-set

= {x E I g(x; co) __0}, (2.73)

and is parameterized by the vector co. In words, the body B._ consists of all points in the

x-plane for which the level-set generating function G(x; co) is less than zero. For a properly

chosen generating function, this set is closed over the range of a_ E A although it can be

disconnected.

To illustrate the level-set shape description described above, the sample generating

function

_(x; w) = wl - e -[(z-t)_+y2] - e -[(x+l)2+y_'], (2.74)

defined over the shape domain £Zs = [-2.0,2.0] x [-1.0, 1.0], and parameterized by the

single variable co = cot is selected. The parameter cot serves to select particular geometries

from the family defined by Equation 2.74 for the full parameter range co E A = [0.5, t.0].

Mesh plots of the generating function and shaded, two-dimensional plots of the resulting
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shape geometries are given in Figure 2-4. The single shape parameter is set to wl = 0.85

for the body on the left in Figure 2-4 and ca1 = 0.60 for the body on the right. For even this

very simple case, the connectivity of tile resulting geometry 6_. can change discontinuously

for a continuously changing shape parameter ca. This is a critical result for the ultimate

application of surrogate-based shape optimization explored later.

The very simple level-set shape generation procedure described above can be easily

extended by introducing a more general generating function. One approach is to treat the

general form of the exponential function on which Equation 2.74 is based

_i(X; ¢o) = t5ie-[(_-z_')'-+(y-g_');], (2.75)

as the core for a more complex level-set function that is results from the application of

superposition techniques. The level-set flmctions formed in this manner describe more

general shapes. Each base exponential function has an associated center (xc_,yc_) and

strength .8i. For N e exponential functions, this yields a generating function of the form

G(x:ca)= ,3o- Z G,(x:,,.,)= & - Z
t=l i=1

(2.76)

where the vector of shape parameters is ca = {(3,,x_j.gc)) !i = 0,....N_,j = 1 .... ,N_}.

With the additional exponential functions and the greater flexibility afforded by the shape

paratneters, a nnlch richer family of geometries can be defined.

The level-set function in Equation 2.76 was explored for the eddy-promoter problem.

It produces smooth bodies that can change topologies (from a single body to more than

one) and also satisfies the preference that the description procedure include cylinders. The

family of geometries that it produces, however, does not include more elongated, oval shaped

bodies without increasing the number of exponential flmctions beyond what is feasible for

accurate surrogate construction. For this reason, a different shape generation function.

described in the next section, has been developed.

2.5.2 Ideal Flow -- Doublet Description

Although not explicitly stated as such. level-set ideas have been used extensively in classical

aerodynamic analyses [2]. The underlying assumption in these approaches is that the true

flow solution over a body can be approximated by an ideal flow solution over the body

[38] with an appropriate circulation superimposed to satisfy flow tangency at sharp trailing

edges. The body surface in ideal flow analyses is a streamline of the ideal flow solution

and general geometries can be analyzed by enforcing flow tangency on the body surface at

discrete points[42].

Ideal fluid solutions can be expressed by a fluid potential flmction Cr or stream function
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¢I, both of whichsatisfyLaplace'sequation

V2¢; = 0, V2¢; = 0. (2.77)

The fluid velocities u = (u, v) are given by

0¢I 0_z
u = c3x Oy (2.78)

0¢i 0¢i
v- Oy Ox (2.79)

The velocity solution u is for an incompressible, irrotational, inviscid fluid flow. Because of

linearity, the superposition of flow solutions for which the velocities are given by 2.78 and

2.79, and that that satisfy 2.77, will also satisfy the ideal flow governing equation. This

superposition property is used to generate solutions over general body geometries.

The ideal flow solution for the flow over a cylinder is described by the superposition

of a uniform flow and a doublet. A mfiform flow u(x, y) = U'_c is described by the stream

function

_b_ nif°rm = U_cy. (2.80)

A doublet is obtained by placing an equal strength source-sink pair a finite distance apart

on the x-axis and taking the limit as the distance between the source-sink pair goes to

zero. The stream fimction for a doublet of strength A and center (Xc, Yc) is

_/doublet = _ _(_ - Yc) (2.81)
(x - xc) _ + (y - _c)2"

The stream function solution for the flow over a cylinder centered at the origin is obtained

from the superposition of 2.80 and 2.81 for (xc, y_) = (0, 0)_

_c,linder = _b_niform cdoublet AY
f 4" = Uocy x 2 "4- y2" (2.82)

The cylinder surface is defined by the _/cylinder_t = 0 streamline (excluding the portions

of the streamline on the x-axis) and the cylinder has radius Rcylinder = V/-_/U_c. The

relevance of this shape description to the original cylindrical eddy-promoter optimization

problem studied previously [40, 77, 79] is readily apparent. By fixing the value of Uoc, the

doublet strength A then serves the sizing input analogous to d, the diameter of the cylinder.

The position input, a, (measured from the lower wall of the channel) is the same as before

7'cylinder = ()_, a).giving the two-dimensional input vector "-'t_v

The superposition idea described above can be further extended with the incorporation

of a second doublet. The additional doublet allows for changes of topology (connectivity)
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similar to the examplelevel-setshapegenerationproceduredescribedin 2.5.1and the
resultsof whichareplotted in Figure2-4. To accomplishthis, onedoubletof strengthA1
is positionedat the originanda seconddoubletof strengthA2ispositionedat (rd, 0). The

uniform flow velocity is set to unity, U_c = 1. Tim stream function for this configuration is

then

Aly A2y (2.83)
¢I = Y X 2-by2 (x--rd) 2 +y 2_

and the geometry is given by the Cz = 0 streamline with the segments on the x-axis

removed. The parameters (ra, A1, A2) determine the specific geometry that is selected. If

the vector of inputs (rd, A1, A2) E _DO is assumed to range over the input space _DD C _3

then the connectivity of the resulting geometry (one or two distinct bodies) will depend on

the values of (rd, AI. A2) and distinct regions of fiDD can be identified that correspond to

single-body geometries, flDO or to two-body geometries, f_DD. and f_DD = flD_ U 9. DD.

The original intent of defining a family of bodies that is a superset of the cylindrical

configuration is satisfied for ra = 0. When rd = 0, a cylinder of diameter d = v/_l + A2 is

obtained. The two-doublet generating flmction in Equation 2.83 is the form used for the

eddy-promoter shape description described in the next section.

2.5.3 Eddy-Promoter Geometry Generation Procedure

The full set of geometry inputs for the two-doublet shape description are shown in Figure

2-5. These include the strengths of the two doublets. A1 and A2, the position of the second

doublet center relative to the first. (xe, ya), and the position of the pair in the channel

ineasured from the lower wall. Y. The distance between the two doublets in Equation 2.83

is rd = _d + Y_' The procedure implemented to obtain the geometrically meaningflfl set

of inputs ZEp = (xa,ya, Y. A1, A2) from the normalized, eddy-promoter, geometric design

vector Pz = (Pzl,...,Pzs) E flz = [0, 1]'5 is described below.

The generation procedure defines the geometric design space fiz in terms of a set of

geometrically meaningful limits put on the resulting eddy-promoter configurations. Because

of the difficulty of solving problems on highly stretched finite element meshes, the eddy-

promoter bodies are never allowed within to of the upper or lower wall. The range of the

of geometric input Xd is set such that Xmi n < X d < Xmax and a limit is set on the total

doublet strength A T = A1 q- A2 of Amin _ AT < Amax. Upper and lower limits are also set on

the strengths of each individual doublet Almin _ A1 __ Almi n and A2min _ A2 < A2min- The

generation procedure that satisfies the geometric requirements listed above consists of the

following 7 steps:

1. The value ofxa is set based on the normalized input Pzl; Xd = Xminq-Pzt (Xmax --Xmin).

2. The total doublet strength is set based on the normalized input Pzs; AT ----- Amin 4-

45



t
E//////I///////////////////////////t///

l = 6.666

Figure 2-5: General geometry for the two-body eddy-promoter configuration.

PZ5()_rnax -- '_min)

3. The total doublet strength distribution parameter, c_, is set such that Otmin _ _ _

-- _ andC[ma x. The limits are dependent on the total strength and are _rnin -- 2AT

C_ma× = 1 --_min. The distribution is set according to Pz3: c_ = O_min+PZ3(O_max -_min).

4. The strength of each doublet is set based on a and AT; ,kl = o_Ar and A2 = (1 - o_)A7.

5. Set the value y_ for the y-position of generator two relative to generator one based on

PZ2; Yd = Ymin +PZ2(Ymax --_min). Tile linlits on Yd are dependent on tile values of )_1,

A2, and to and are Ymin = -2(1 - to) + V_l + v_2 and Ymax = 2(1 - to) - V/A1 - v_2-

6. Generate the bodies based on the input values (Xd,Yd) , _,l, and A2 and find the min-

imum and maximum extent of the configuration in the y-direction. This requires

placing a doublet of strength At at the origin, a second doublet of strength A2 at

(0, rd), finding the body surface, and rotating the configuration by _. The maxinmm

and minimum vertical extent of the eddy-promoter configuration, BYmin and yBmax, are

used to set the final limits on Y.

7. Set Y according to Pz4; Y = Ymin +Pz4(Yma× + Ymin). The limits on Y are functions

of BYmin, YBmax, and to and are Ymin = to - Yrnin and Ymax. = (2.0 - to) - yBmax.

This somewhat involved set of steps must be performed to generate the bodies because

simply positioning one doublet at (0, 0) and a second at (Xd, Yd) will not produce a closed

contour (or two closed contours) unless ya = 0. This requires the superposition of two

doublets on the same axis and then the rotation to define the bodies in the channel. It is

important to note that for the cases in which two distinct bodies are described, the resulting

bodies are not circular cylinders. However, in the linfit as the distance between the doublet
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centers approach infinity, the bodies approach circular cylinders of radius R1 = _ and

Matlab [47] has served extensively for the shape generation. The steps described above

have been coded into a Matlab routine that takes as input a sequence of normalized inputs

Pz, and writes as output a file that contains the surface node coordinates for each input,

design point Pz. The node coordinate file is read by the mesh generator to build the finite

element solution mesh.

As already mentioned, the primary benefit to defining the shapes in this manner is

that it allows for topology changes relative to smoothly changing input parameters. This

capability permits optimization over a wider range of configurations without having to resort

to discrete optimization procedures. The most important characteristic of geometrically

describing a shape space with more than one distinct topology in a level-set based approach

such as this is that the input-output relationship can be expected to be continuous (and

possibly smooth). This property is demonstrated empirically in Section 2.5.4.

The level-set method described above can be extended through the incorporation of

additional doublets to allow the definition of more geometrically rich body profiles. Ap-

proaches such as this are very common in ideal flow analysis of airfoils. Finally. through the

careful selection of generating functions that consistently define bodies for arbitrary (xi. gi)-

the method could be extended to still more complex topologies.

The above described steps generate a set of shapes that obey the geometric constraints.

It also ensures that that the entire normalized input space .O.z corresponds to feasible

designs. In the next section, an example that illustrates the topology change is given. The

example shows the smooth transition from one to two distinct eddy-promoter bodies, and

gives empirical evidence that the input-output functions are continuous across a topology

change.

2.5.4 Input-Output Response Example

To demonstrate, at least empirically, that the relationship between the normalized geometric

inputs, Pz, and the outputs is continuous across a topology change, the finite element

simulation described in Chapter 3 has been used to approximate two of the outputs. Only

one of the normalized inputs, Pz l, of the full normalized input vector Pz has been has been

varied. The first component of the normalized geometric input vector corresponds to the

physical coordinate xa shown in Figure 2-5. The bounds on Xd have been set to Xmin ---- 0.00

and ./:max = 0.75 and Pzl E [0, 1]. A total of 21 geometries have been generated with the

values of Pzt clustered near the value at which the topology change occurs. The remaining,

normalized geometric inputs have been fixed such that Pz = (Pzl. 0.60.0.50, 0.50.0.50). The

lower and upper limits of the geometric quantities that correspond to fixed normalized inputs

are/_min = 0.109, /kmax = 0.109, _min = 0.85, and amax = 0.85. With the above information.
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the geometrygenerationproceduredescribedin Section2.5.3hasbeenusedto compute
the surfacecoordinatesfor eachinput Pz. Representativeeddy-promoterconfigurations
producedby this setof inputsareplottedin the top half of Figure2-6.

For the computationalcaseexaminedhere,theReynoldsnumberhasbeensetto Re =

250. The two outputs of interest are obtained from the finite element simulation and are

e0 E= e E(pz)=
Nu(ZEp(pz), Re = 250)'

(2.84)

¢0FE = ¢0FE(pz) =< f(t; ZEp(pz),Re = 250) > (2.85)

where Nu is the Nusselt number given in Equation 2.51, and f(t; ZEp , Re = 250) is the

time-dependent forcing term in Equation 2.25 required to achieve the prescribed flow rate.

The results of the computational study are given in Figure 2-6. Selected eddy-promoter

geometries from the sample set are plotted in the upper half of the figure. The output

responses versus geometric input value Xd are plotted in the lower half of the figure. The

normalized input Pz1 is a simple linear scaling of xd; therefore, the output response plots

versus PzI would tell the identical story to those in Figure 2-6. In the output response

plots, the dashed line indicates the approximate value of Xd for which the topology change

occurs. Single-body configu?ations have Zd values to the left of the dashed line and two-

body configurations lie on the right. The results plotted in Figure 2-6 support the assertion

that the input-output relationship remains continuous across topology changes. In fact, the

first derivative appears to be continuous as well. fllrther supporting (empirically) that the

geometric description used for the eddy-promote_p_oblem is well suited for the surrogate-

based optimization techniques applied in Chapters 4 and 5.

2.6 Reduced Problem for the Eddy-Promoter Example

In this section, the particular set of inputs used for the eddy-promoter example problem

and the corresponding design space are described. Second, the outputs of interest and

the inputs of which they are functions are restated. Finally, the performance metrics that

characterize the design preferences for the eddy-promoter design problem are presented.

2.6.1 Inputs and Input Domain

The full set of physical inputs are the variables that specify the specific geometry of the

eddy-promoter inclusions ZEp = (xa, ya, Y, A1,12) as well as the nondimensional, inverse

channel height r/L. For the eddy-promoter problem examined in the Chapters 4 and 5,

a reduced set of inputs is used. The generator strengths, A1 and A2, are fixed and the

remainder of the geometric variables, Xd, Yd, and Y serve as inputs. This gives a reduced
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Figure 2-6: Input-output response results for a topology change. Selected eddy-promoter

configurations are given in (a)--(f) and the output responses are plotted in (g) and (h)

versus the geometric input Xd.
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setfor the normalizedinput vector

P = (Pl,...,P4) E _ = [0,1]4 (2.86)

which has M = 4 inputs and is a member of the normalized design space ft. The fixed

generator strengths are A1 = 0.0871, and A2 = 0.1065. The relationships between the

normalized inputs p and the geometric quantities (Xd, Yd, Y, rlL) are

:Ed : Xmi n -4- Pl (Xmax -- Xmin), (2.87)

Yd ---- Ymin + P2(Ymax -- Ymin), (2.88)

Y = Ym n + P3(Yma, - Ym n). (2.89)

_TL = r]Lmin + P4(rlLmax -- r/Lmin), (2.90)

where Xmin = 0.0, 2"max = 3.5_ Ymin, Ymax, Ymin, and Yma× are each determined based

on to = 0.15 and the generation steps described in Section 2.5.3. r/Lmin = 13.332, and

r/Lmax = 106.656. The limits on tim inverse channel height correspond to a range, for

the full heat exchanger, from 4 periodicity lengths, l, through 32 periodicity lengths. Tile

periodicity length is held fixed at l = 6.666.

For convenience in the latter sections of the thesis, it will be necessary to make a

distinction between the inputs for which the performance metric response must be modeled,

either by the finite element simulation or by surrogates, and the inputs for which the

performance metric response is known analytically. The vector of modeled inputs Pm E

_2m = [0, 1]3 consists of the first three components given in Equation 2.86

Pm= (Pl,P2,P3), (2.91)

where the relationships in Equations 2.87--2.89 and the steps described in Section 2.5.3

are applied to relate the normalized inputs to the geometric quantities. The analytic input

Pa C _a = [0, 1] corresponds to the inverse channel height

Pa = (P4). (2.92)

where p4 is the identical input to that given in Equation 2.86 and which can be related to

r/L through Equation 2.90.

The design domain is likewise decomposed into modeled, 9tin = [0, 1]M_, and analytic.

_a = [0, 1]M", subspaces of D. where the number of modeled inputs is Mm = 3 and the

number of analytic inputs is Ma = 1. The full design domain is the tensor product given
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by

and the full designvectoris

fl = f_m× f_a, (2.93)

P = (Pro,Pa)E f'/. (2.94)

2.6.2 Outputs

Thetwo-body,eddy-promoterproblemhastwo outputsof interest.Theoutputsareeach
functionsof the modeleddesigninputs, pro. The first output is the time-averageof the

nondimensionalpressuregradientgivenin Equation2.40andexpressedas

_b0(Pm)=< br(Pm, t) >=< f(t) > (2.95)

where as before. < • > refers to a time-average over a sufficiently long time.

The second output is tile inverse Nusselt

0o(pm) = _T(p,,,) -
1

Nu(pm) (2.96)

and is defined in Equation (2.51).

2.6.3 Performance Metrics

The performance metrics have been described in detail in Section 2.3 and will only be

restated here. The metrics have been selected to characterize tile design preference for the

full eddy-promoter heat exchanger, a segment of which is shown at the top in Figure 2-2.

The engineering goals of the design problem are to transfer as much heat as possible into

the channel and to do so with as little pressure drop as necessary.

The performance metrics are functions of the modeled inputs p_ through the output

functions g'0(P,_) and 00(pro) and, although not the case for this problem, could be explicit

functions of the modeled inputs as well. The performance metrics are functions of the

analytic inputs Pa explicitly. In fact, the analytic relationship between the performance

metrics and p_ is known.

The first performance metric is the nondimensional pumping power

v_(p) = _(¢0(Pm), P) = log10 [_bo(Pm)Rearl3L] (2.97)

which is a function of the output ¢0(P_) and of the analytic input p_ through the nondi-

mensional, inverse channel length r/L. The response of ffa(p) to the input Pa is known

analytically through the normalization relationship in Equation 2.90.
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The secondperformancemetric is the nondimensionalwall temperaturedifference

O(p) = O(00(Pm), p) = lOgl0 _ + 00(pro) (2.98)

which, similarly to _(p), is a function of the output 0o(pm) and of the analytic input Pa

through the nondimensional, inverse channel length r/L. The response of @(p) to Pa is also

known analytically through Equation 2.90.
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Chapter 3

Numerical Approach

In this section, tile mnnerical approach used to solve the governing equations 2.25, 2.26.

2.31 is described. A second-order accurate in time. senti implicit, split time advancement

scheme has been used [23]. The spatial discretization uses a Galerkin finite element approach

with triangular elements. Second order, isoparametric elements are used to approximate the

velocity and temperature solutions and first order, linear elements are used to approximate

the pressure. A variable time-stepping scheme has been employed to allow the time step

size to vary as the solution is advanced so that the Courant condition is satisfied.

In the following sections, the details of the munerical approach are presented. First. the

spatial discretization is described including the elemental matrix treatment, the strategy

used to form the convection operators on-the-fly, and the required quadrature accuracy to

ensure that heat does not build up. Second. the second-order accurate, temporal diseretiza-

tion is presented, the method used to achieve the prescribed, constant flowrate is given, and

the iterative and direct solvers used to invert the matrices are described. Finally, a sample

of the code performance for a representative problem and for the various solver options is

presented.

3.1 Finite-Element, Spatial Discretization

For symbolic expediency, in this section the velocity vector components will be expressed

indicially, u = (ul,u2). This runs counter to the (u,v) form used in the remainder of

this thesis but greatly simplifies the presentation of the numerical implementation. The

variational weak form of the governing equations 2.25, 2.26, 2.31 over the solution domain

ft for the solution variables u(x, t) E [H_0(fi)] 2, p(x, t) E L_0(f_). and 0(x, t) E H_(_) is

1

4-(v,,u. Vu,)4--_e(VVi, Vui)-(Vvz,p)=(vi, fi), i=1.2.

w E [H10(n)] (3.1)
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(v .u,q) = 0, vq e L_0(_), (3.2)

and

1 1
(_,o_) + (_,u-(vo))+ R---g-p--;(V_,VO) = --r(_, u. _t) + R--S-_ea.,(_),

vw• H_0(_), (3.3)

where

dl, (3.4)eo_,(w) = _,
w

_t is the lower wall of the computational domain, L_0(fl ) is the set of all xl-periodic

functions that are square integrable, and H_0(9. ) is the set of all xt-periodic functions that

are square integrable and have first derivatives that are also square integrable. The product

(a, b) is defined as

(a, b) = J_ a bd×. (3.5)
P

A finite element, spatial discretization of the governing equations is pursued. A iT'_-_l

(Taylor-Hood [70]) elemental basis is selected. With this choice, the velocity and tempera-

ture solutions are represented by second order triangular element and the pressure is treated

with linear triangular elements. The reason for choosing the Taylor-Hood elements is that

it is known to satisfy the inf-sup condition [33] for tim existence of a unique solution and

can be conveniently implemented. The second order node points consist of the vertices of

each element as well as the midpoints along each element side and the linear "pressure"

mesh is simply a subset of the second order mesh consisting of only the node points at the

vertex of each element.

The full solution domain 9. is subdivided into A/"_z triangular elements such that

.k'et

= O n__- (3.6)
ke=l

and _k, is the triangular element with index k_. The discrete solution to the governing

equations 3.1-3.3 can then be expressed as: Find uh(x,t) • [Vh]2, ph(x,t) • Ph, and

Oh(x, t) • Vh where the following are satisfied

1 h
a"/")÷(v,,uhW,_)+_(vvi,w,i)-(v,_,,p,) = (,,,,]2), _= 1.2. Vv • b_,]" (3.r)

(V.u h.,q) =0. Vq• Ph, (3.8)

1 h

(_, o,h) + (_, uh •(voh)) + R-Tp7(vw, vo ) = -7(w, uh •_) + -- 1 £ wdS,
RePr fit

Vwe Vh. (3.9)
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Thesuperscript'h' refersto thediscretesolutionandthe discretesubspacesaredefinedas

Ph= {%,., e _(r_')} n C:_o(P.), (3.10)

vh= {vln,-,_ _2(n_)} n H}o(n), (3.11)

where C_0(fi ) is the space of all zl-periodic functions that are continuous and have zero

average.

A Galerkin finite elmnent approach, in which the solution and test flmction bases are

identical, is pursued. A global basis for the velocity and temperature is introduced

¢i(xj) = 60 , 1 _< i,j <_ H", 1/_ = span{C,, i = 1,. .. ,AP'}, (3.12)

where ,V"_' is the mnnber of global second order nodes and xj is the global coordinate of

node j. The basis is used to express a general function u over the full solution domain f_ as

._'t,

vh(x) =Z_.¢,,(x)
n:[

(3.13)

where vi = u(xi). Similarly. a second basis for the p,essure is introduced

_Pi(xa) = dia, 1 < i,j < ,U p. Ph = span{_",,, i = 1...... *V'P}, (3.14)

where ,V"p is the number of global pressure nodes. The basis is used to express the general

function q. discretely over fl as

.\'p

qh(x) = Z qn_,z(X)

n--1

(3.15)

and. as before, qi = q(x_).

To proceed with the discretization, the solution variables and the test functions are

expanded with the appropriate basis function defined above. The expanded forms

u_= Z"n_(_), v= Z_,,_,(x).
n=l n=l

.\'p .\'p

ph =ZPn@n(X), q = ZqnOn(X) '
n:l n=l

o_ = Zo.¢.(x), _=Z_.¢_(×).
n=l n:l

(3.16)

are substituted into Equations 3.7-3.9. The resulting spatially-discrete, governing equations
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are obtained
Oui I

B-_+C(u)ui+-_eAui-Drip=Bfi, i= 1.2, (3.17)

Diui = O. (3.18)

1

BOt + C(u)0 + R---_-p_rA0 = -'_B(u. _t), (3.19)

where, for convenience, the superscript 'h' has been dropped. The finite element matrices

are

Bij = _ ¢i¢j dx (3.20)

Aij = fn V@ • VCj dx (3.21)

D_zj= f ¢,,tCjdx. D2zj= f ¢,,2_jdx (3.22)

Cij(u) = ffl uV¢iCj dx (3.23)

The finite elemental matrices given in Equations 3.20--3.23 are evaluated elementally, and

a direct stiffness summation procedure is used to apply the corresponding global matrix

operators when needed.

3.1.1 Elemental Matrices - /P, Isoparametric Formulation

At the elemental level, each element is transformed from the Cartesian coordinate system to

an elemental coordinate system through a a transformation. For subparametric elements.

an affine transformation is used. For such a transformation, the elemental coordinates

= ((1,_'),(3) take the form

(t = al + blx + cly,

_2 = a2 -t- b2x q- c2y,

_3 = a3 + b3x + c3y,

(3.24)

where the coefficients are given by

(:c2y3 - x3y2) bl - (y2 - y3) (x:_ - z2)
at = 2A 2A , ct - 2A '

(x3Yl -- XlY3) (YZ -- _/1) (Xl -- 2:3)

a2= 2A , b2= 2A , c2- 2A '

(Xly2 -- X2Yl) (Yt -- !12) (x'2 -- Xl)
a3 = 53 : c3 --

2A ' 2A ' 2A '

(3.25)

and ,4 is the area of the element. Note that only two of the affine coordinates are independent

(as expected for _2) and the the relationship that _t + (2 + _3 = 1 holds. If subparametric
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Figure 3-1: ANne mapping from the x-plane to barycentric coordinates 4 = ({1-_2. _a).

elenmnts are used..the expressions in Equations 3.24 and 3.25 allow the elemental matrices

to be evaluated analytically. Because isoparametric elements have been used in this work.

the elenmntal matrices can not be evaluated analytically and the relationship in Equations

3.24 and 3.25 can not be applied. Instead Gaussian quadrature must be used to evaluate

the elemental matrices' integrals.

Over element ke, a function can be expressed in terms of the elemental, linear basis

flmctions as
3

qk, (4) = _ @g,(4), (3.26)
i=l

where the linear basis functions are

hi(4) =_1, h2(4) = _2, h3(_) = _3. (3.27)

and q/k¢ is the function value at node i of the element ke. Similarly, a function can be

expressed in terms of the elemental, second order basis functions as

6

,k_(4) = E _h,(4), (3.2s)
i=l

where the second order basis functions are

h2(4) = _2(2_2- 1),

h3(4) = _3(2_3- 1),

h5(4) = 4_2_a.

h6(4) = 4_a_t.

(3.29)

The derivatives of the basis functions with respect to the barycentric coordinates, 4. are
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obtainedfrom theexpressionsin Equation3.29,and tile relationshipthat (3 = 1- _1+ _2
andare

oh1 (_) Oh1(_)
- 4_1 - 1, - O:

0(1 0_2

Oh2(E,) Oh2(()
- 4(2 - 1, - 0,

0(1 0(2

0ha(() Oh3(()
- 4((i + (2) - 3, - 4((l + _) - 3,

0_1 0(2

0h4 (() Oh4(()
- 4(2, - 4_1,

0_1 0(2

Oh_(_) 0hs(_)
- -4_2, - 4(1 - _1 - 2(2),

0(1 0_2

0h6(() 0h6(()
-4(1-2_1-(2), - 4_1.

0_t 0_2

(3.30)

A direct stiffness summation procedure is used to form the matrices given in Equations

3.20-3.23 based on elemental components. This is accomplished by using the local basis

functions given in Equations 3.27 and 3.29 and transforming the integrals to _-space. For

example, the elemental contribution for stiffness matrix is

A)_=. /_ _ ,](_) \( Ohi(_) OhT(_)_Ox + Ohi(_) OhJ(_) ) d_'OyOg (3.31)

where the Jacobian J(() is given as

Ox Oy Ox Oy

J(_) - 0_1 c9_2 c3(2 0_l (3.32)

and is a function of the coordinate _ because of the isoparametric implementation. The

(x, y)-coordinates are expanded in terms of the basis functions in Equation 3.29 as

6 6

x(() = _ xihi(¢), y(() = _ yihi((). (3.33)
i=1 i=1

Plugging the coordinate expressions into Equation 3.32 gives

which is now expressed entirely in terms of the ( coordinates.

(3.34)

The derivatives within the parentheses in 3.31 (of the elemental basis functions with
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respect to x and y) are expanded as

0h,(4) 0h,(4) 041 0A,(4) 042
Ox - c3fl Ox + Of 2 Ox' (3.35)

Oh,(4) Oh,(4) 041 0h,(4) 042
Oy - 0_ Oy + 0_2 Oy" (3.36)

To obtain derivatives of the elemental coordinates with respect to the Cartesian coordinates.

the relationships

dx = x_d_l + x_,_d(2, (3.37)

dy = g¢ld_t + y_;d(2, (3.38)

are solved for the differentials d{1 and d_2. This gives the expressions

d41 = g_,.dx - x_:dy , (3.39)

d_2 = x_,dz - y_dy (3.40)

from which the desired results are easily obtained. Recognizing that the denominators in

Equations 3.39 and 3.40 are the Jacobian (3.34). the expressions for the derivatives of the

elemental coordinates with respect to the Cartesian coordinates are

Oft_ g__, 0(t _ x(.,

Ox J(4) Oy J(4)'

Of: y_ 0_2 z_

Ox J(4)' Oy J(4)
(3.41)

Again, the derivatives of the Cartesian coordinates with respect to the elemental coordinates

can be obtained, as they were for the Jacobian in Equation 3.34. by using the expressions

in Equation 3.33.

An expression for the stiffness matrix that is entirely in terms of the elemental coordi-

nates, 4, can be obtained by first substituting Equation 3.41 into Equations 3.35 and 3.36

to obtain

Ohi(4) _ 1 (Oh,(4)Oy Ohi(4) Oy) (3.42)Oz J(4) 0_1 0_2 Of_ 041 '

Ohi(4) _ 1 (Ohi(4) Oz Ohi(4) Ox) (3.43)
Oy J(4) 0_2 0_1 O_j, 0_2 "

Finally, substituting Equations 3.42 and 3.43 into Equation 3.31 gives an expression for the

stiffness matrix that is a function of 4 only

Aij (4)= k_ J(() L\ 0_1 0_2
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ox ohio,,ox)(ohj ,,ox 0x)]8_2 0¢1 0_1 _2 c_2 0_1 a_l _2 d_, (3.44)

where the ,]acobian, J(_), is given in Equation 3.34.

The remainder of the elemental matrices are obtained by following the same procedure

as was used for the stiffness matrix. The resulting expression for the mass matrix is

B_](_) =/_. J(_)hi(_)hi(_)d_. (3.45)

The gradient matrix in Equation 3.22 is split into two components; the first for the derivative

in the x-direction and the second for the derivative in the y-direction. The resulting two

matrices are

£,, <2°Yoh,(¢)Oy- (':3(_-2 0(, ) _'J('_) d_¢' (3.46)DI_] (,_)

D2_f(() = '¢ \ 0_2 0¢1 0_ 0_2 hi(¢) de, (3.47)

and it is interesting to note that the Jacobians completely cancel in the above expressions.

The elemental component of the flfll convection operator in Equation 3.23 is broken

into its directional components. The velocity vector that is embedded in the integral is

expanded with the local basis flmctions similarly to Equation 3.33. The expansion allows

the velocity values at the nodes to be taken out of the integral. The elemental convection

operator is
6 6

i=l i=l

where the convection operators take the form

£ 0y ahk(¢)0y) d,¢, (3.49)

For subparametric elements in which the second order nodes are at the midpoints of

the vertices, the elemental matrices in Equations 3.44-3.50 can be evaluated analytically.

However, subparametric elements introduce _skin' [69] errors along curved boundaries. To

reduce the skin errors, isoparametric elements are used along the curved boundaries. With

the isoparametric elements, it is not possible to compute the integrals of the elemental

matrices analytically, and Gaussian quadrature is used instead. Using Gaussian quadrature,

the integral of a function g(_) : f_k_ _.+ _ is approximated as

._rq

g(_)d¢ ,_ area k_ E zai9({i), (3.51)
_'e i:1
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whereareak" is the areaof elementke. The weight at point i is _, and the position

to evaluate the integrand is quadrature point Ei. When used for the matrix evaluations,

the area of the elements in _-coordinates is ahvays area k'- = 1/2. A 5th-order Gaussian

quadrature scheme in which N "q = 7 has been used for all of tile simulations. The weights,

_i, and quadrature points, Ei, are given in Appendix C.1.

3.1.2 Convection Operator Treatment

The elemental stiffness, mass, and gradient matrices in Equations 3.44-3.47 are computed

for each elmnent ke = 1,...,,,'V "et and stored in three-dimensional arrays during the initial-

ization phase of each run of the Navier-Stokes code. Neglecting symmetries, tile storage

required for each of the stiffness matrix, mass matrix, and the two gradient matrices com-

bined, is 6 × 6 x jV"e_, which is not unreasonable from a memory standpoint. However. each

convection operator requires 6 × 6 × 6 ×/V "d for storage which has a dominant impact on

tile code memory requirenlent. While this issue is only moderately significant for the two-

dimensional solver, it dominates the storage for three-dinlensional problems and severely

limits the size of problemsthat can be solved.

Fortunately. the application of the convection operator can be evaluated for each time-

step as needed (on-the-fly) at the expense of only a moderate increase in computational

effort. This completely eliminates the overwhehning storage penalty. To demonstrate tile

s(:henle used. the convection operator ternl in the u-n_onlentunl equation is used as an

example. The velocity vector in two-dimensions is u = (ul, u2). The variational weak form

for this term is

(w. u- V _zl) = /_._ wu- Vul dx

= f9.__ J(E)wu" Vul dE

= f_q_. J(E)w (ut Oul_ + u2"-_yjC3Ul'dE

/q _. Ou l Ou l= + £,. a(E)w ,2--fjv dE (3.52)

where w is the test function. The test function and the velocities are expanded in terms of

the elemental basis functions

6 6 6

wk¢(E ) = _-'w_h_(E), u{'_(E)= _-_(ut)_'_hi(E), u_(E)= _-_(u2)_h,(E), (3.53)
i=1 i=1 t=I

where w/k_, (ut) k_, and (u2)/k_ are the values of the test function and the velocities at node

i of element ke.

If only the first term on the last line of Equation 3.52 is considered first, the expansions
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in Equation3.53and the resultgivenin Equation3.49canbeusedto obtain

ffl Out 6 6 6
i:1 j:, k=l

(3.54)

Similarly, using the same expansions and the convection operator in Equation 3.50, the last

term on the last line of Equation 3.52 can be written as

f_ .... Olti 6 6 6 C2ijk(()-
k¢ i=1 j=l k=l

(3,55)

Recognizing the the convection operators in Equations 3.49 and 3.50 are of the form

(3.56)

where

( Ohk(_()Oy Oh_(() Oy )

a,j_(() : h,(()/b(() Ohk(() O_ Ohk(() Oz

(3.57)

(3.5s)

and evaluating the integrals by Gaussian quadrature as in Equation 3.51 gives the following

expressions

.\'q 6 6 6

,, Z 22Z Z
/=1 i=I)=lk=l

(3.59)

J_ Oul 1 "''_ 6 6 6 _k_GC,.
/=i i=13=lk=,

where _t is the coordinate of quadrature point l.

(3.60)

The summations over i in Equations 3.59 and 3.60 are dropped because the solution
k_

will be for any test function wi E i,_. The expressions for the convection operators could

be implemented in a code with nested summations exactly as suggested by Equations 3.59

and 3.60, but this would be extremely inefficient. Instead, by expanding the expressions for

Gc, ,_ c,ijkt l) and Gij-k(_l ), the terms in Equations 3.59 and 3.60 precomputed and stored inside

of the direct stiffness summation procedure. This greatly reduces the number of operations

from a brute-force implementation.

First, for Equation 3.59, the regrouping takes the form

1 A'q 6 6
k_ Ct

/=l j=l k=l
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, t,

./=t j=t
Ohj',l'O 2,361,

Similarly, the regrouped form for Equation 3.60 is

1 266
j=1 k=l

j=l j=1

Ox
(3.62)

At this point, all that remains is to clean up the terms in Equations 3.61 and 3.62.

The j- and k-summation terms in Equations 3.61 and 3.62 can be precomputed at each

quadrature point and stored. The terms are

6

j=l.

(3.63)

6

IF (_!__, ¢l) = Z (u.2)_'_ hj (¢1). (3.64)
3=I

,c, k, t', (0 I) Oy Ohj((t ) Oy (3.65)
,x t,-,_ ._) = Z ("l)j \ o,1 o_, o_2 _

j=l

6 (Oh3(_l) Ox Ohj((t ) Ox) (3.66)
j=l

where _ = ((ul)_ _ (ul)_ _) and u.__ = ((u2) k" k,,''', -- 1 .... , (1t2)6) are vectors of the velocity

components at each node of element ke. A vector N'q long is required to store each of the

terms in Equations 3.63-3.66. Additionally, the values of the basis functions and the deriva-

tives of the basis functions can be precomputed at each quadrature point, filrther reducing

the operations needed during the time advancement. The only elementally-dependent quan-

tities that are needed for the above calculations are for u__f", u_2k', and the derivatives of x

and y with respect to the elemental coordinates. The derivatives are computed as they are

for the expression in Equation 3.34.

Finally, inside of the loop over the elements of the direct stiffness summation procedure.

the terms IC(uk_,_t), IC(v_k',_l), IC(uk_,_t), IC(v--k_,_l), IC(u--k_,_l), and IC(vk_,_l) are

computed and stored in N'q-length vectors. For the elemental computations, the terms

IC(u_k',_t) and IC(vk",_t) each require 2 x 6 x .N'q operations and the terms IC(_uk_,(l).

IC(t_ 'k_ , _). IC(L tk_, (t), and IC(v_ k_ , (t) each require 5 x 6 x N "q operations. The derivatives

of the spatial coordinates with respect to the _-coordinates in Equations 3.65 and 3.66

require 8 x 6 x Jv "q operations. The effect of the convection operator is added to the the
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right hand side of the discrete equations with a direct stiffness summation procedure. The

elemental contributions to the right hand sides of the x- and y-momentum equations are

RHSI_e 1 "_''q= --- L - + z (3.67)
/----1

1 .v'q
= _ _)I_(u__,¢t)+I (u 2,_)Iv(u_ 2, ,

l=l

respectively.

The total operation count required to apply tile stored convection operators to both

momentum equations is 1512 x N "_t. The total number of operations required to compute the

right hand side contributions in Equations 3.67 and 3.68, and to apply them globally to both

momentunl equations using the direct stiffness summation procedure, is 2712 x.A/'q.Af el. For a

5th-order quadrature scheme in which ,_/'q = 7, the on-the-fly evaluation requires roughly 13

times as many operations to apply convection contribution full-storage technique. However.

the memory requirement is reduced from 2 x 63 x,Ai et for the full-storage technique to roughly

30 X ._J'q for the on-the-fly evaluation, which is trivial compared to storage needed for the

other elemental matrices.

3.1.3 Temperature Solution Periodicity

Care nmst be taken in the solution of the governing equation for the periodic part of the

temperature given in Equation 2.31. For the continuous equation, it has been shown in

Section 2.2 that the last term on the right hand side of Equation 2.31 will ensure that there

will not be a build-up of heat over long periods of time. This is not guaranteed for the

discrete case. If. however, a sufficiently accurate Gaussian quadrature scheme is used. it

can be shown that the discrete equations will be exactly satisfied by the value of 7 given in

Equation 2.39.

For convenience, the weak form of the periodic temperature Equation 3.3 is repeated

1 1

(w, Or) + (w, u. (V0)) + R----_-_r(_Tw, V0) = -7(w, u. el) + R---_r gof_ (w). (3.69)

A procedure similar to that used in Section 2.2 to find 7 _is followed for the discrete equations
3

to determine the required accuracy for the Gaussian quadrature rule so th_for 7 = 4RePr'

heat does build up over long time periods. Integrating the equation over the discrete solution

domain f2 is equivalent to setting the test function w = 1.

First, the requirement that heat not build up over long time periods is equivalent to

requiring that

1 ft+r< (w, Ot) >= - (w, tgt)dt = 0, (3.70)
Tdt
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for w = 1, and r on the the order of the period of the steady-periodic state. In the discrete

case, the time-average in Equation 3.70 is equivalent to summing the 2nd-order, implicit,

backward difference stencil over a sufficient number of time-steps. Because the coefficients

of the stencil given in Equation 3.83 sum to zero, inner terms of the summation cancel

exactly, and Equation 3.70 is satisfied discretely when averaged over enough time-steps.

For the second term on the left hand side of 3.69 to be zero when w = 1. the quadrature

rule must be sufficiently accurate so that the integral over each element for w = 1 is exactly

evaluated. The test function w will be is included in the elemental integrals. At the end of

the analysis, setting w = 1 will be equivalent to evaluating the integral over the element.

The integral in terms of the elemental coordinates _ is expressed as

f_ wV. (u0) dx = /_ w.](()V. (u0) d,_. (3.71)k e ke

The solution values and test function inside Of the integral are expanded according to the

elemental basis functions in Equation 3.28 to obtain

6

= Z Q'
i=l

(3.72)

6

=
i=l

(3.73)

6 _"" )" .TT-TT_,6 )O(u0)(() _ _--_(u0)). ¢ Ohi(_) 1 (Ohi(E,) 07j Oh_(() O_j , (3.74)
Oz i= t Oz i= 1

6 6 )
0(u0)(_)0y - _--_(u0)/k_i=l Ohi(E,)09- ,=1_--_(u0)£_ J-_) \(Ohi(E')o(20(tOz Ohi(E,)o(1_Oz (3.75)

Note that a modified expansion has been used in which the velocity-temperature prod-

uct is treated as one variable. This form has been implemented in the code and allows a

lower quadrature rule be used than if the velocity and temperature were expanded sepa-

rately. By substituting Equations 3.72--3.75 into Equation 3.71. the convection term of the

temperature equation is written as

0 [£ ]
ke ke j=l i:1

6 6

j=l t=l

6 6

j=l i=1

(3.76)
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wherethesubstitutions

k_ 0hi(_) Oy Oh,(_) Oy (3.77)

Oh_(_) Ox Ohi(_) Ox (3.78)

have been made. For w = 1, the basis functions hj(_) in the integrals of Equation 3.76 can

be neglected. The highest remaining power, in terms of the components of ¢ = (_1,_2), in

the integrals are of 2hal-order. This implies that the integral will be evaluated exactly for

each element, and subsequently for the summation over all elements of the domain, when

a Gaussian quadrature scheme of at least order two is used. As stated in Appendix C.1, a

5th-order quadrature scheme has been used that satisfies this requirement.

The third term on tile left hand side of Equation 3.69 goes to zero for w = 1 from

taking the gradient of the constant function, _Tw = 0. All that remains is to show that the

two terms on the right hand side exactly balance. The first term on the right hand side is

integrated over the solution domain _ by setting w = 1. Evaluating the discrete integral

gives

-7(w = 1.u. _l) = -_,Ql. (3.79)

where the result is dependent on the flowrate. The flowrate is prescribed Q = ] and is

exactly enforced as described in Section 3.2.1.

The final term on the right hand side of 3.69 is evaluated for w = 1 to get

1 l

RePrgO_t(w = 1) - RePr" (3.80)

The sum of Equations 3.79 and 3.80 must be zero. Solving for ^/gives the desired result

3

_/ - 4RePr" (3.81)

The accuracy for the Gaussian quadrature rule necessary to evaluate the discrete inte-

grals exactly, and to ensure that for "),given in Equation 3.81 that heat will not build up in

the periodic domain is determined by the integrands in Equation 3.76. The quadrature rule

must be such that a second order polynomial function is integrated exactly. A 5th-order

scheme has been used which meets (exceeds) this requirement.

3.2 Temporal Discretization Split Time-Stepping

The spatially discrete, analytic in time, governing equations are given in Equations 3.17-

3.19. The temporal discretization pursued is a semi-implicit, fractional time-stepping

scheme [23, 28]. This approach reduces the time-advancement problem to a sequence of
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smallersubproblemsand allowsthe convectionoperatorto be treatedexplicitly while the
remainder(tile Stokessubproblem)is advancedimplicitly. In the schemethat hasbeen
usedhere.a 3rd-orderaccurate,explicit Adams-Bashforthintegrationschemeis usedto
advancethe nonlinearconvectionterms,and a 2nd-orderaccurate,implicit backwarddif-

ferenceschemeis appliedto the Stokessubproblem.

A variabletime-step formulationis used.The reasonfor this approachis that. dueto
the unsteadynature of the sohltions,the stability criterion is likely to vary significantly
astile solutionis advanced.It is difficult to determinea priori a time-step that will be

stable for the entire solution evolution, and it is inefficient (fl'om a computational effort

standpoint) to use the nlinimunl step-size for tile entire solution advancement even if it

could be determined. The senti-implicit form for the velocity equations is

n-l) 1 Aup+ l_Dripn. 1B((iup +t + ('eU,_ + _,3Ui +

'2
n+l

: E '_qC(un-q)uT-q + Bf, .

q=0

i=1 '2. (3.82)

where the 2hal-order. backward Euler coefficients are

At,, (3.83)
Ct = 2At,, + At,,__ ¢2 = - AtnAt,_+AtnAt''-__t <3 = AL_(Atn + -Xt,,_ t

_Xt,,(At,_ + At,,_1)

As expected, for the constant time-step case where Atn_l = At. = At. the coefficients in

Equation 3.83 reduce to give the well known finite-difference stencil for the first derivative

3gn+ 1 _ 4g n + g n-1
g'(t)l _+_ = 2_',t + O(_F-). (3.84)

The coefficients _q. q = 0.1.2, have been derived in Appendix C.2 and are

At n
_o -

12

At.
_t -

12

At_
& - 12

"12Atn_t(Atn-1 + At,_-2) + 6Atn(2At.-_ + At._,_) + 4Ate]

Atn-l(Atn-1 + Atn-2) J

6At.(Atn-t + At._2) + 4At,2_]

Atn-lAtn-2 ]

6At_At.__ + 4At_

At__.2(Atn_l + Atn-2

(3.85)

(3.86)

(3.87)

The terms in Equation 3.82 can be collected to obtain

Hun +1

2

_ Drp "+I = -B(<2u[ _ + (3u[ '-I) - _ _qC(u"-q)u[ '-q + Bf "+1.
q=0

i= 1.2. (3.88)
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whereH is thesecond-order,Helmholtzoperator

!A
H = Re + _IB. (3.89)

The fractional splitting scheme approximates semi-implicit form in Equation 3.82 with

a sequence of smaller steps. The result is

2

Hun+l = DTpn+I -- B((2un + (3un-1) -- E _q C(un-q)un-q q- Bf'_+l, (3.90)
q:0

Epcorr = -_Du n+l (3.91)

un+l = fin+l 1 B_lPcorr ' (3.92)
%1

pn+l = ff_-i + Pcorr (3.93)

where fine-1 is an intermediate approximation to the velocity at step n + 1. E is the consistent

Poisson operator

E = D_B-1D T + D2B-ID2 T. (3.94)

Pcorr = pn+l _ fin+l is the pressure correction term. and p--n+1 is an approximation to the

pressure at time step rz + 1 and is simply a linear extrapolation from the previous two time

steps

fin--i =p,, + (p,, 4_p_-I) Atn
Atn-l' (3.95)

The solution steps of Equations 3.90-3.93 are as follows; (3.90) approximate the pressure at

n-+-1 and solve for an intermediate velocity fin-t (3.91) solve for a pressure correction term

Pco_r by enforcing divergence-free flow. (3.92) use the pressure correction term to correct

the velocity approximation, (3.93) use the pressure correction term to update the pressure.

The governing equation for the periodic part of the temperature, 0, is decoupled flom

the flow equations, and is updated after the flow solution is updated. An identical scheme is

used to advance Equation 3.19 in time. The resulting, semi-implicit, fully discrete equation

is
2

He 0n+1 = -B(_20n + _'30n-1) - _/3qC(un-q) 0"-q - 7B(u n+l ' el), (3.96)
q=0

where He is the temperature Helmholtz matrix

1

He - RePr A + _'IB. (3.97)

The inversion of the Helmholtz operator H in Equation 3.90 and of He in Equation 3.96

are elliptic solves and can be accomplished with an iterative, conjugate gradient algorithm,

or with a direct, sparse LU-factorization. Because H and He are well conditioned, Equa-
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tions3.90and3.96canbesolvedveryefficientlywith a preconditionedconjugategradient

method. Inverting the E operator in Equation3.90is moredifficult as the conditioning
is very sensitiveto the homogeneityof the finite elementmesh. For solutionschemesin
whichall inversionsare iterative, it requiresthe bulk of the solutiontime. BecauseE is
muchsmallerthantheothermatrices(its sizeisdeterminedbyN "p < A/"v) and its inversion

dominates the solution time, it is the best candidate for treatment with a direct solver.

Details of both the iterative and direct solvers used in the code are given in Section 3.2.2.

In both 3.91 (inside of the Poission operator) and 3.92, tile mass matrix B must be in-

verted. For a spectral element spatial discretization, this is a trivial matter as the elemental

mass matrices are diagonal. However, the mass matrix for the /iP.2, triangular elements is

not diagonal, and therefore must be inverted with either an iterative solver or direct, sparse

solver. To avoid the additional matrix inversions resulting from the use of the full mass

matrix, the diagonally lumped mass matrix has been substituted. The elemental, diagonally

lumped mass matrix I3 _'_ for element k_ is

B):" [fik_ I, i= 1..... 6.
1_'_ _ Trace(B_,. )

(3.98)

where [_k_] is the area of element .O.k_ computed from the full elemental mass matrix and is

6 6

i=1 j=l

(3.99)

3.2.1 Flow-Rate Specification -- Green's Function

In this section, the method used to determine the time-dependent, pressure forcing term

fn+I = (fn+t,O) in Equation 3.90 is described. The value of the fn+l must be set to

achieve the desired average flow velocity V = 2. This is accomplished by first solving in a

preprocessing stage for a Green's function u*. The Green's function is obtained by solving

the 'Stokes-like' part of the spatially discrete Equations 3.17 and 3.18 for a unit pressure

forcing term. Then, the full set of governing equations are advanced in time, neglecting

the pressure forcing in Equation 3.90, and, after each time step, superposition is used to

achieve the correct flow rate and to determine the required value of fn+l.

The preprocessing step (which only needs to be solved once) consists of solving the

Stokes equation

Hu;=BI+DTp ", i=1,2. (3.100)

for the velocity u* = (u_, u_) and the pressure p*. The unit forcing 1__= (1, 0) is a vector

of ones on the x-equation nodes only. The finite element matrices are identical to those in
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Equation3.90.The flowrateiscomputed

Q, = _1/vEP u* dx, (3.101)

and is used to determine the pressure forcing term f(t). The intermediate velocity u* and

pressure p* solutions will be superimposed with the time-step solution to determine the

correct Navier-Stokes solution.

The second, time-advancement phase of the solution proceeds exactly as outlined in

Equations 3.90-3.93, but with the forcing term neglected. The modified, intermediate

solution phase has tile steps.

2

f U n-IH_ n_x = DT_ n+t -- B(@u_ "n + _3 t ) -- E '3q C(uln-q)uln-q (3.102)
q=0

Epcorrl = -(t D_ n+ t (3.103)

ui_+l = _+1 1 B_lpcorr_. (3.104)

ptn--t = _n+t + Pcorrt (3.105)

after which, tlle pressure forcing is (tetra'mined and tile solutions are superimposed. The

f.-1 _ Q.+I _ QI
Q, (3.106)

forcing term is simply

where the intermediate flow rate Q_ is

QI = _ Ee ut dx, (3.107)

and the flow rate at step n + 1 is the prescribed flow rate

41

Vn+l = IV = --_-. (3.108)

The final step is the superposition of the solutions to obtain the velocity and the pressure

at stepn+l;

u _+1 = fn+lu* + uz, (3.109)

pn+l = fn+tp* + Pt. (3.110)

The preprocessing stage of the solution needs to be done only once. The increase in

solution time is very small in relation to the total time required to sufficiently advance the

solutions to achieve a steady-periodic state. To solve 3.100, an Uzawa algorithm is used [46]
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which decouples the pressure solve from the velocity solve and results in the two equations

Sp* = D1H-1B, (3.111)

Hu* = Dgp * + B1, (3.112)

where S is defined as

S = DIH-tDt r + D2H-ID2 r. (3.113)

Equation 3.111 issolved with a nested conjugate gradient scheme and Equation 3.112 is

solved for the velocity components with a conjugate gradient algorithm.

3.2.2 System Solution Strategy -- Iterative and Direct Solvers

In this section, the solvers used to make the necessary matrix inversions at each step of the

solution process are described. Matrices must be inverted for the solution of the preliminary

Stokes solve (nested inversions for S in Equation 3.111 and of H in Equation 3.112), to obtain

the approximate velocity solution in Equation 3.90. for the solution of the pressure correction

term in Equation 3.91, and finally for the temperature solution update in Equation 3.96.

3.2.2.1 Iterative Solution -- Conjugate Gradients

The iterative solution algorithm of choice for finite element solvers is the conjugate gradient

method. The conjugate gradient algorithm is extremely efficient for solving well conditioned

problems and requires very low storage. The conjugate gradient algorithm has been exten-

sively reported [31, 68] and the underlying theory is not detailed here. The preconditioned

conjugate gradient algorithm for the solution of Ax = f, for a symmetric, positive-definite

matrix A E £R n×", preconditioning matrix M E _:_nxn, x E IR n, and f E _n is

m=O.r °=f-Az °, z ° =M-It °,w ° =z °,

while 5(r m) < tol

m=m+l

CZm = (zm_zm)/(wm,Aw m)

xrn+ 1 = x m + _mwm

r m+l = r m = omhtvm

zm+ 1 ____M-lr m+l

_3 m = (zm+l,rm+l)/(zm,r m)

Win+ 1 : rmal/3rnw m

e nd
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The stopping criterion is based on e(rm), where

l

i=1 B, ]

It should be noted that, for the preconditioning to be efficient, the solution z = M-it must

be easily obtained. The preconditioner used for all of the iterative solves was simply the

matrix diagonal M = [AiiJ, i = 1,..., n which has only limited beneficial impact in practice.

3.2.2.2 Direct Solver -- Sparse LU-Decomposition

A sparse matrix solution package written by Kundert [43] has been used to perform the

direct matrix solves when the Navier-Stokes code is run in one of the the direct-solver

modes. The package is Sparse "Version 1.3 and is available at Netlib. 1 The Sparse package

is written in C and manages all of the memory allocation internally making it very easy to

integrate into other codes. It can handle arbitrary square, real and complex, linear systems

and is also able to find determinants and estimate ill-conditioning errors. According to its

documentation, it performs as fast or faster than other sparse matrix packages and. at least

anecdotally, it seems to be very efficient.

The sparse solve consists of two stages. For the first stage, matrix factorization, the

matrix elements are re-ordered and a LU factorization is performed [11]. The lower and

upper triangular matrices are then stored. The second stage, forward and backward sub-

stitution, is performed on any number of right hand sides without havhlg to re-factor the

original matrix. For details of the algorithm, the reader is referred to [43].

As is well known, the factorization time is very large compared to each forward/backward

solve. For the initial CPU cost of the LU factorization to be worthwhile, it nmst be prorated

over enough time-steps to make the total solution time for the direct solve approach to

be lower than for the iterative solver. The break-even point is easily exceeded by the

total number of time-steps that are needed to obtain periodically varying, steady-periodic

solutions.

3.3 Sample Code Performance

The Navier-Stokes code can be run in several modes, based on whether the iterative or

direct solver is used for each matrix inversion. The lowest memory, most time consuming

solution mode uses the iterative solver for all of the matrix inversions. Conversely, the

1The Netlib master index web address is http://netlib.bell-labs.com/neglib/master/index.htral

and the Sparse Version 1.3 package is located in the sparse directory

htt p://net lib.bell-labs.com/netlib/sparse/index.ht ml.
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highestmemory,fastestsolutionmodeusestile direct solverfor all of tile matrix solutions.
Variouscombinationsof iterative/directsolvesresultin solutionmodesthat fall ill between
the two extremes.Tile sohltionmodesaredescribedbelow.

Mode I Conjugategradientsolversusedfor all matrix inversions:H in Equation
3.90,E in Equation3.91.and He in Equation3.96. This moderequiresthe
leastmemorybut highestCPUtime.

Mode II Conjugategradientsolverusedto invertH in Equation3.90and H0 in
Equation3.96.The direct solverisusedto invertE in Equation3.91.

Mode III Conjugate gradient solver used only to He in Equation 3.96. The direct

solver is used to invert E in Equation 3.91 and H in Equation 3.90.

Mode IV Direct solver used for all of tile required matrix inversions: H in Equation

3.90. E in Equation 3.91. and H0 in Equation 3.96. This mode has the highest

memory requirement but the lowest CPU time.

It is inlportant to note that tile H and H0 matrices are dependent on the timestep size

-_t,,. If the tinmstep size is changed during the time advancenlent, the H and H0 matrices

must be updated and. if running in Mode III or Mode IV. one or both factorizations

must be recomputed. The time penalty incurred by frequent t imestep adjustments and re--

factorizations wottl(t rapidly overwhehn the performance benefit realized by the direct solver.

To avoid such a situation, a conservative timestep is selected as soon as tile periodic steady

state is achieved and is heht fixed for the remainder of the time advancmnent. Because the

E matrix is not Atn dependent, timestep updates can be performed more frequently when

the code is used in Mode I or Mode II.

To demonstrate the performance of the code. timings have been performed with tim

code running in each of tile solution modes listed above. For the computational times that

are reported, the factorization tinle has been neglected. It is reasonable to neglect this as

the contribution to the total solution fl'om tile factorization for the O(10,000) time steps

that a solution is typically advanced is negligible. In all cases, the timestep size is constant

throughout tile run.

Tile sample problem consists of a two-body, eddy-promoter configuration with the grid

shown in Figure 3-2. Tile number of nodes and elements are indicated in the figure resulting

in matrices sized as H E _r156×r156 E e j_1842x1842, and He E K_rt56×rl56. Because the

E operator is much smaller than H and H0, and its inversion requires the majority of the

flflly iterative solution time, it is tile best candidate for solution by the direct solver. This

result is evident from the solution times and memory requirements listed in Table 3.1.
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Figure 3-2: .Mesh plot of the configuration used for code performance tests (2_r*t = 3471,

,,,'V'_'= 7156. H p = 1842).

Solution Mode CPU seconds/timestep Core memory (Mbytes)
Mode I

Mode II

Mode III

Mode IV

7.91

2.51

1.32

1.22

18.2

26.5

44.1

63.4

Table 3.1: CPU time and memory requircd for the four solution modes running on a Hewlett
Packard C-160 workstation.

74



Chapter 4

Baseline Surrogate Approach

To begin the description of the baseline, non-parametric validated, surrogate framework it

is first necessary to define a hierarchy of approximation models. Implicit in this discussion

is the assumption that the governing equations (or experimental setupt accurately represent

the problenl under consideration. With this assumption, a hierarchy of three approximation

models are defined:

Exact This is the exact, analytical solution to the governing equations. For the eddy-

promoter problem, it is tile solution to Equations 2.25--2.36. The exact solution can

be obtained only for the very simplified cases (e.g. channel flow with no obstructions).

Truth The truth model is the 2"d-order in time. Lo.__--_I finite element solution of the

governing equations that is described in Chapter 3. While this is clearly not of the ac-

curacy of the exact solution, it represents the best obtainable solution for the problem.

TILe truth model serves as the reference for the validation and error analyses.

Surrogate TILe surrogate model is the very inexpensive (by design) apt)roximation to the

ezact solution and typically consists of a simple input-output model (e.g. response

surfaces, scattered data interpolatiom etc.). The surrogate model is used in place of

the truth model in design studies.

The non-parametric validated, baseline surrogate framework has been extensively re-

ported [55, 57, 77, 78, 79] and is only repeated here to serve as a reference to the surrogate-

Pareto optimization pursued in Chapter 5. In the baseline surrogate approach, a simple,

inexpensive model (a surrogate) is substituted for an expensive simulation (or experiment as

in Chapter 6) in the optimization process. The simulation serves offtine first, to construct,

and second, to validate the surrogates which are usually an inexpensive input-output func-

tions. This is in contrast to online optimization approaches in which the simulation is called

directly by the parent optimization process. In online approaches, the simulation serves as

a subroutine call to the optimization routine.
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Approximate, offline optimization approaches have been widely used but typically do

not provide rigorous error estimates for surrogate-predicted designs. The distinguishing fea-

ture of the non-parametric, validated surrogate approach is the surrogate validation step

of the framework that provides a posteriori error estimates on designs near the surrogate-

predicted, optimal design(s). The surrogate approach is related to probably-approximately-

correct approaches [74, 26] and information-based complexity theory [73]. It differs, how-

ever, from the former in that it is truly non-parametric (no assumption is made in regard to

the distribution of optimal input points) and from the latter in that it requires no regularity

estimates for the input-output function.

The surrogate approach is best suited to problems that meet at least some of the follow-

ing classifications: (1) The underlying simulation or analysis is computationally expensive

making the large number simulation queries required for the optimization intractable. (2)

The integration of the analysis code with the optimization package is impractical because

of difficult interfacing or the lack of sensitivity derivatives. (3) The problem is global in

nature and the design space covers a wide range of potential designs in which there may be

many, locally-optimal designs. (4) Flexibility is needed in terms of rapid turnaround, as in

cases in which the design goals evolve with the design and more is learned.

In each section of this chapter, the surrogate framework is presented for a general prob-

lena with two outputs and two performance metrics that are functions of each output as

well of the input vector. An important distinction to be made between the general prob-

lem presented here and those cases analyzed previously [55, 57. 77, 78, 79] is that here.

surrogates for the sinmlation outputs are validated. The performance metrics which serve

to quantify designer preferences are functions of the validated outputs as well as (possibly)

of the inputs. This adds additional flexibility and generality to the surrogate framework in

that the validated simulation outputs can be used in future design studies with different

performance metrics and similar error bounds will obtain without the need for additional

appeals to the simulation. In the earlier surrogate work, the performance metrics are val-

idated directly. This restricts the design studies to that particular choice of performance

metrics. A change in the form of the performance metrics therefore requires that the vali-

dation step be repeated, necessitating additional appeals to the simulation. The two-body,

eddy-promoter problem serves as an example of the two output, two performance metric

design problem presented in this chapter.

The baseline surrogate framework consists of four steps. The first step of the framework,

surrogate construction, is discussed in Section 4.1. In the second step of the framework,

presented in Section 4.2, the inexpensive surrogates are validated against the truth simula-

tion at randomly selected points. In Section 4.3 the third step of the framework, surrogate

based design, is presented. The fourth and final step is the a posteriori error analysis of

the surrogate-predicted designs and this is presented in Section 4.4. The a posteriori error
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analysis, which uses the validation results without requiring additional appeals to tile sim-

ulation, gives error estimates for designs near the surrogate-predicted optimal designs as

well as an estimate to the design optimality.

4.1 Surrogate Construction

The first step of the baseline surrogate framework is surrogate construction. To begin, given

a vector of Mm modeled inputs, Pm E f_m C/R Mr" that lie in the model design (or input)

space fire, surrogates for two (K = 2) truth outputs of the simulation, cr(p--) : t2m --+ _,

and CT(p--) : 9t_ -+ N, are constructed. Although the intent is that tile surrogates,

¢-_(p_) : flm -4 _ and ¢_(p_) : flrn -+ _. approximate the simulation as closely as
T t _ l

possible over 9.., ¢1(P_) _ Ct (Pro), ¢2(Pm) _ CT(p--), the results that will be obtained

in the later sections of this chapter are valid regardless of the quality of the surrogates.

The surrogates can be constructed by any means, whether it be by appeals to the truth or

to another simulation, by empirical relationships, by the use of limiting solutions, or some

combination of all of these.

For the two-body, eddy-promoter problem, the two truth value outputs obtained from

simulation are is the pressure forcing term required to achieve the target flow rate. q)0T(pm).

and the inverse Nusselt number. 00T(pm). The surrogate construction set

Xco= {(p,_.Oro(p,,,).So(p,,_))_ ..... (p,,,.Oro(p,_).Jo(p,,)).\._o}. (4.1)

is formed by appealing to the finite element simulation (Truth) at 91 points in the design

space .Q,, (defined in Section 2.6.1) and by including an additional 165 limiting solutions for

a total constuction sample size of N c° = 256 input-output pairs. The 91 sinmlation points

have been chosen from an orthogonal array (Appendix D.2) that ensures a good space filling

design. The additional 165 limiting solutions correspond to the upper and lower limits of

Pro'2 (Pro9 = 0 and Pro2 = 1) and represent duplicate geometric realizations at different

points "ot: the design space f_m.

The approximation scheme used for the surrogates is a radial basis function fit through

the construction set, ?(_o, for each output. The particular radial basis function used here

is described in Appendix D.1. The surrogates for the outputs are interpolating functions

in that the output surface passes exactly through all of the points in the construction set

?(co. As demonstrated empirically in Section 2.5.4. the output functions are continuous

over the entire model design space f!m and an interpolatory model is appropriate without

the need to track and account for discontinuities. The plot in Figure 2-6 shows that the

output function continuity is preserved across a topology change. Three-dimensional mesh

plots of the surrogates are given in Figure 4-1. On the left in the figure are P,,_I-Pm2 slices

of the surrogates for Pro3 = 0.50 and on the right are Pml-Pm3 slices of the surrogates for
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Figure 4-1: .Xlesh plots of_the output surrogates: (a) _(pm) slice for p,n:_ = 0.50. (b) O0(pm)

slice for Pro2 = 0.50. (c) _'0(P,,_) slice for P,n3 = 0.50. (d) _P0(Pm) slice for P,,2 = 0.50.

Pro2 = 0.50. The temperature output O°(Pm) is at the top and the pressure output ¢o(P,n)

is at the bottom.

4.2 Surrogate Validation

The second step of the surrogate framework is surrogate validation. In this step, the surro-

gate models are validated against the truth at input points that are randomly chosen from

the model design space flm. To proceed with the description of the validation step, several

functions must first be introduced.

The importance function P(Pm) serves as a probability density function for the selection

of validation points from the model design space flrn:

fgt P(Pm) dpm = 1. (4.2)
rn

The importance function leads to the notion of a p-measure of a subdomain of the design

space _m which is simply the weighted relative Mm-volume of the subdomain. For any
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subdomainD C ftm. "the p--measure of D," #p(D), is

pp(D) =/z p(pm) dpm < 1. (4.a)

The p-measure of of full model input domain f_m is one, #p(fim) = 1.

Next, K scaling functions are introduced, one corresponding to each of the output

surrogates that are to be validated. For the general two output problem examined here. tile

scaling functions 00t(p') : tim --+ f_, and Oo2(p') : _2m -+ _+ are the two strictly, positive.

error-scaling functions. The scaling functions serve primarily to make the errors between

the truth value and the surrogate values for each of the outputs of the same magnitude. A

secondary purpose for the scaling function is to reduce tile impact of regions of the design

space where large surrogate errors may exist.

With the importance flmction and error-scaling functions defined, the validation sample

set X ''a is formed as

X _'_ = {(Pml,_br(pml),_br(pmt)),... (Pm.\-,C_(P,..x-),¢r(pm.v))}, Pmi "-' P(Pm)-

(4.4)

where the input points P,,_ are independent, identically distributed randonl points drawn

according the probability density function P(Pm). Tile truth outputs in 4.4 are obtained by

appeals to the siinulation at each validation point P,ni. The size of the validation sample

set is

f ln_'' ] (4.5)

where Izl is the smallest integer that is greater than z. Later. it will be shown that

st represents the p-measure of the uncharacterized region (the region in f_,n where tD,

surrogate error magnitudes [Otr(p',,_)- aS_(p_)[ and tcr(p'm)- gs_(p',n) ] are unknown)and

e_ is the significance of the probabilistic error estimates that are developed.

With the validation sample set formed, the model prediction error U is computed as

and the uncharacterized region T is defined as

- l(Pm)[

'

T= pmEf_rnl max [_\ 0-oT('P;m-) '

[¢2r(Pmi) - _(P,,_i)[ (4.6)

-7------ Igo.,'P:--:' > U (4,7)

The model prediction error is the maximum, absolute truth-surrogate difference over tile

set of randomly drawn, validation input points Pmi, i = 1 ..... _V. The uncharacterized

region is that subset of the model design space f_m for which the scaled truth-surrogate

error is greater than the model prediction error U. The validation provides no information
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asto the locationof the uncharacterizedregionnor doesit provideany insight asto the
magnitudeof the errorsin that region.This uncertaintymanifestsitself in the locality of
theerror estimatesthat aredevelopedin Section4.4.

The modelpredictionerrorprovidesa probabilisticestimateasto the maximumtruth-
surrogateerrorovera fractionof themodeldesignspaceQm.Theprecisevalidationstate-
mentreads:

Pr(pp(T) < ¢1) _> 1 - e2. (4.8)

What 4.8 says in words is that, with probability of at least 1 - e2, the fraction of the model

design space f_m for which the surrogate differs from the truth by more than U is less than

el. The relationship between N, el, and ¢2 is entirely determined by the sampling theorem

in Equation 4.5. The validity of 4.8 given 4.5 can be proved with order statistics. The proof

is given in Appendix B.1.

Tile validation step is the final step in the surrogate design framework where truth cal-

culations are needed. The results of the validation framework provide precise, probabilistic

bounds oi1 the prediction error of the surrogates for designs near surrogate-selected opti-

mal designs, without having to appeal to the simulation. The estimates can be generated

for any number of designs and can be obtained very rapidly as the only required function

evaluations are of the surrogates. This gives near-instantaneous turnaround for the er-

ror estimates of each design and makes that design process interactive, which is extremely

important in situations where the design goals evoh'e as more is learned.

The validation step has been performed for the global surrogates of the two outputs for

the eddy-promoter problem. Because no prior importance had been assigned to any region

of the model design space fl_, a uniform probability density function p(pm) = 1 has been

chosen for the selection of the validation input points. A total of 24 sinmlation evaluations

have been budgeted for the global validation which, from Equation 4.5, gives el = 0.0561

and c._ = 0.2500. The scaling functions have been set to constant values g0(P,_) = 2.00 and

gc,(Pm) = 1.00. Fornfing the validation sample, A"_'a. and finding the maximum, unsealed

surrogate error for each output gives

max I00T(pm) - O0(p_)I = 0.0968, (4.9)
,,lff t'a

max l¢_'(pm) - ¢0(P_)l = 0.1910. (4.10)
.)t_ t' a

The model prediction error U is computed from Equation 4.6 and is U = 0.9681. From

this, the following statement on the global quality of the surrogates can be made: With

probability of at least 75% (1 - e2),

10[(pm) - O0(pm)[ _< 0.0968g0(pm) = 0.1936, (4.11)
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I%r(pm) - _0(Pm)] _ 0.0968_,(pm) = 0.0968, (4.12)

over at least 94.39% (1 - sl) of the model design space. The global bound for tile two

output surrogates hold for the same 94.39%-sized subset of the model design space flm.

4.3 Surrogate Based Design

It is assumed that the design preferences are characterized by two performance metrics, each

of which is a function of both surrogate outputs, ¢-_(p') : f/re' --+/R and ¢_(p'_) : tim' --+ _,

as well as of tile full design vector p'. For both metrics, lower values are assumed to

correspond to better designs.

To form the surrogate metrics, the output surrogates, ¢_(prm) _ ¢_(pt,,L) and ¢__(p_)

T r¢2 (P,n), are substituted into the performance metric flmctions. The resulting surrogate

metrics _1 = _l(¢_(P_n)_ ¢'£'(P_m), P'): Ft' ---_JT_and _'2 = _'2(¢_'_(P_m), ¢-'_(P_,), P'): f_' --+//_

are then used for the design studies. Because the surrogate outputs are trivial to evaluate,

any nmnber of designs may be pursued and the trade-offs between improvements in one

metric versus the other can be fully examined and understood. The a posteriori error

bounds developed in the following sections will apply for any design chosen based on the

surrogate performance metrics and will require no additional simulation evaluations. In

addition, because the surrogate outputs have been validated (and not the full performance

metric functions), different performance metrics (using the same inputs, outputs and design

spaces) can be used as the basis for design studies and the error estimates will still be

derivable. This gives additional flexibility to the design process.

The eddy-promoter problem that serves as the illustrative example here falls into the

problem class just described. The output surrogates, constructed in Section 4.1 and val-

idated in Section 4.2. are used to form the surrogate performance metrics. The output

surrogates, 00(Pro) and _Po(Pm). constructed in Section 4.1 are substituted into Equations

2.97 and 2.98. The resulting surrogate performance metrics are given by

_)(p) = O(0o(pm),p) = loglo _ + O0(pm) , (4.13)

_(p) = ffg('g;O(Pm),P)= logl0 ['_O0(Pm)ne3zf3L], (4.14)

and are dependent on the full design vector p = (pro, Pa) E f2 = [0, 1];t=4. The range for

the analytic input, r/t. E [13.332,106.656], is as stated in Section 2.6.1.

For the design study, two designs, Q = 2, are pursued. The first design problem (q = 1)

is to find the configuration that gives the best heat transfer. The second problem (q = 2)

imposes a constraint on the value for the pumping power q2. Both problems, q E Q = {1.2}.
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canbeformulatedas

_q= arg min e(t_0(Pm),p), VqE Q (4.15)
{pEril qs(t-70(pm).p)_<_ TM }

where _q is the surrogate-predicted design point that minimizes the surrogate-based, wall

temperature performance metric subject to the constraint that _q = _(_bo(_q), _q) < _q.

The temperature performance metric at the optimal point _q is _)q = O(O0(_q), _q).

To perform the optimizations, a subspace searching, simplex algorithm (SUBPLEX)

written by T. Rowan [61] and available on Netlib, 1 has been used. The algorithm is a

generalization of the the Nelder-Mead [51] simplex algorithm in which high-dimensional

problems are decomposed into low-dimensional subspaces that can be efficiently searched

with tile simplex algorithm. The SUBPLEX algorithm is well suited for the unconstrained

optimization of noisy" objective functions. Tile problem studied here (4.15) is a constrained

optimization problem. The optimization results presented in this section have been obtained

using tile scalarization technique presented in Section 2.4.3. To find a global minimum for

each design problem. 200 random restarts selected from a uniform distribution over {2 have

been performed. The inexpensive nature of the surrogates makes such a "'brute-force"

approach tractable. The optimizer proved to be very robust in practice, and this was the

primary reason for choosing it.

The two design problems have been carried out for the eddy-promoter heat exchanger

example, and the results are summarized in Table 4.1. For the first design, the pump-

ing power constraint _q only needs to be set sufficiently high to ensure that it remains

inactive. For the first design _71 = 1 x 10a and for the second design _2 = 9.4801.

The optimization process gives the optimal points _1 = (0.1008,0.2875, 1.0000, 1.0000),

_- = (0.8549,0.4729, 0.6449, 0.0000), and the corresponding surrogate-predicted, perfor-

mance metric values _1 = -2.2626, _l = 12.5137, and _)2 = -1.7106. _22 = 9.4801. The

inverse channel heights for each design are r/}_ = 106.656, and r/_ = la332 The physical

geometry for a single periodicity cell of each design point is given in Figure 4-2.

Design (q)

1

2

g)q
1 x i0 3 (0.1008,0.2875, 1.0000, 1.0000) -2.2626 12.5137

9.4801 (0.8549,0.4729,0.6449,0.0000) -1.7106 9.4801

Table 4.1: Baseline surrogate-based optimization results.

1The Netlib master index web address is http://netlib.bell-labs.com/netlib/rnaster/index.html

and the SUBPLEX software is located in the opt directory.
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(b) Design 2.

Figure 4-2: Eddy-promoter configuration for each of tile surrogate-predicted optimal de-

signs.

4.4 ,4 Posteriori Error Analysis

Tile a posteriori error analysis step of tile surrogate framework takes as inputs tile surro-

gates, tile probability density and error-scaling functions, tile model prediction error, and

tile surrogate-predicted design points. From these inputs, and without appealing to the

sinmlation, probabilistic estimates of the difference between the surrogate and the truth at

points in the design space near tile surrogate-predicted designs are derived. Two fornm-

lations for the estimates are presented: proximal region, in which the esthnates are valid

for a region of non-zero measure, and proximal candidate: in which the estimates apply to

a randomly selected design point near the surrogate-predicted optimal point. In addition.

the a posteriori error analysis provides an assessment of the surrogate-predicted design

optimality in terms of an estimate of how much effort is required to improve the design

beyond a given amount. Tile proximal region and proximal candidate error analysis meth-

ods are presented in the next two sections, followed by the optimality analysis in the final

subsection.

4.4.1 Surrogate Predictability -- Proximal Region

To begin the Proximal Region error analysis, a model prediction region T'_ _ P. is de-

fined as a subdomain in the full design space f_ of p-measure z_, and that contains the

surrogate-predicted design point _'. Here. the p-measure of _2 is computed only from

the components in the model design space Qm. Recall that the design input vector p can
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bedecomposedinto a modeledinput vectorPm (the inputsoverwhichthe surrogatesare
constructed)and an analytic componentPa (the inputs for which the performancemet-
ric responsesareknownanalytically). Likewise,the surrogatepredictedoptimizercanbe
decomposedinto _* = (p_, p_). The predictionneighborhoodcan then be defined as the

tensor product P*I = P_q. x p_ where _*m¢l is the model prediction neighborhood with

-p,the p-measure defined in Equation 4.3, /ap(re,q) = el. The notion of how to precisely

define the prediction region P_ in practice is made more clear with the eddy-promoter

example later in this section and in the following section. In general however, very limited

assumptions are made as to the construction of P_ and it is not required to be connected.

With the prediction neighborhood defined, probabilistic bounds on the outputs for de-

signs near the surrogate predicted optimizer are first derived. The output bounds then serve

to construct probabilistic bounds for the performance metrics for designs near the surrogate

predicted designs.

The predictability statement for the outputs reads: With probability at least 1 - el.

there will exist a region of non-zero measure F" C "P_I

that for all points p" E F"
T i

/ol -< ¢1 (Pro) <- uol,

,7" i
to_, _< 02 (Pro) < uo.,,

in the neighborhood of P_n such

(4.16)

(4.1;)

where the truth-output bounds are

lo, = rain }[¢l(P'm) - U_)o_(P')], (4.18)
{p'E'Pm. 1

uo_ = {P'eT_a':lmax}[¢1(P') + U(?o, (P')], (4.19)

____ ! U ^ I

lo,- min }[¢2(Prn)--_ 9o_,(Pm)], (4.20)
{P'EP_. 1

U ^ r
uo, = max }[¢2(P') + gO2(Pm)]" (4.21)

{ p' E'P:n .. 1

The above result effectively bounds the truth values of the outputs near the surrogate

predicted designs.

To extend the bounds to the performance metrics, a second step is pursued using the

output bounds presented above. The predictability statement for the performance metrics

reads: With probability at least 1-g2, there will exist a region of non-zero measure F' C T'_

in the neighborhood of p* such that for all points p' E F'

T t T t
L¢t< _1(¢1 (Pm),¢2 (Pm),P') -< U_,_, (4.22)

T I cT_ IL¢2 < 02(¢1 (Pro), 2 tPm),P') --<U,,, (4.23)
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wheretile performancemetricboundsare

L¢1 = min _1(zl, z'2, p'), (4.24)
{ p'E'P" 1 ,zlEZt,z2EZ"_}

Ue_l = max _51(zl, z2, p'), (4.25)
{p'EP$1 ,zl E ZI ,z2E Z ; }

L¢2 = min O2(zl, z2. p'), (4.26)
{p' ET'J 1 ,zl EZ1 ,z..EZ,_}

U,2 = max 02(zl, z_, p'), (4.27)
{ pl E'P._ 1 ,zl 6Z1 ,z2EZ2}

and the output ranges. Z1 and Z2, are determined by Equations 4.18--4.21 and are

zl = {z I lo, < z <  ol},

Z2 = {z I lo,- < z < uo }.

(4.28)

(4.29)

To define the prediction neighborhood P_._'_precisely, a distance metric A(pml,pm_)

that quantifies the distance between two points is introduced. The prediction neighborhood

around the surrogate predicted optimal point _,q,, is then defined as that region 7_. of size

-_1, that minimizes

r.x = max A(p,,,_qn). (4.30)
prnE_

For tile eddy-promoter problem, tim distance metric function has been defined based on

the outputs and is

A (P'" l' Pm'_)= max ( _° (pro l ) - ]° (pro2)h0 , _° (Pro t ) - _b°(P"_ 2))£-_, . (4.31)

where ho and h_. are positive scalars. The definition for the distance functiou in 4.31 can

be used to specify the neighborhood with minimum O0 sensitivity (for hv sufficiently large)

or, likewise, the neighborhood with minimum ga0 sensitivity (for ho sufficiently large). By

setting the levels of the ho and h v to match the relative variation of the surrogate over the

region _, a balance between the O0 and ¢o sensitivity can be obtained.

The output bounds in Equations 4.18--4.21 have been evaluated for each design. The

output bounds have then been used to evaluate the bound quantities given in Equations

4.24--4.27. Tile resulting predictability statements for the truth values of the performance

metrics are given below. For Design 1, the statement reads: With probability of at least

75%, there will exist points in F 1 C "P_t such that for p' E F l

11.1809 _ qJ(_b[(p',_), p') <_ 12.8194, (4.32)
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Figure 4-3: Output plane plot of the two design point performance pairs (-) and the asso-

ciated predictability boxes.

-2.3899 < ®(80T(p'm), p ') _< --2.11,52. (4.33)

For Design 2. the statement reads: With probability of at least 75%; there will exist points

in F 2 C _t such ttiat for p' E F 2

T ;s.47t6 < (P,n),P') -<9.86t3, (4.34)

T l
-2.3372 < o(e0 (pro),p;) < -1.4601. (4.35)

The predictability statements are valid for each design for the corresponding prediction

neighborhood. For a given design q, the region Fq C :Pev_ for which the points satisfy the

performance metric bounds is identical for each metric.

The results given above have been plotted in the output plane in Figure 4-3. In the

figure, the surrogate performance metric values for each design are plotted as solid dots and

the bounds on the truth performance metrics are plotted as boxes. It is evident from the

predictability bounds for the two eddy-promoter designs given in 4.32--4.35 that the global

output surrogates are quite poor. Even for the two very different designs that have been

selected (based both on the associated geometries and the surrogate-predicted performance

of each), the error bounds between the two design overlap. This implies that the surrogates

are not accurate enough to distinguish between the two designs as regards temperature.
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4.4.2 Surrogate Predictability- Proximal Candidate

The ProximalCandidate a posteriori error analysis requires that we define a prediction

region 7_ C _ that is of p-measure o, and that contains the surrogate-predicted optimal

point _*, in a manner similar to that presented for the Proximal Region analysis of Section

4.4.1. A sample candidate design Pm is selected randomly according to P_ -,_ pp(Prn). The

density function Pp(Pm) is defined as

Pm) p *P'P(Pm) = P( , Vpm E Ping (4.36)

where 7_na C fi,n is tile sub-manifold of 7'_ that corresponds to the model design space

and the full neighborhood is the tensor product 7_ = {7_ x p_}. Tim full candidate

design vector P* is given as P* = (Pm,P_) where p_ is the analytic inputs of tile sur-

rogate predicted optimizer _* = (p_,p_). Tile candidate designs can easily be selected

with acceptance-rejection techniques without having to formally construct the prediction

neighborhood P;n a'

A second small parameter, _c, is introduced and is related to p-measure of 7_;n_, a. by

1
(1 - (1 - or)'\'--i), (4.37)

=c - a(N + 1)

where 0 < ac,a < 1. and N is the vali(iation sample size given in Equation 4.5. It will

become evident below that Cc is the significance of the probabilistic bound estimates that

are derived.

Now, given tim two inputs to the analysis Cc and c_. and the model prediction error U.

the following statement can be made: With probability of at least 1 - _c, the truth output

values at Pm are bounded by

r ^, _ (4.38)

l_., _ C{{P;n) -< u_2, (4.39)

where the bound values are

l_, = ch_(f)m) - Ugo_ (P_n), (4.40)

= + uoo, (#;n), (4.41)

c (Pro), (4.42)1o2 = ¢2(Pm) - UOo.,_ ^*

= + (4.43)

Equations 4.38--4.43 bound the truth value of the outputs for the candidate design point

#;,.
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To extend the analysis to the performance metrics, a procedure similar to that of Section

4.4.1 is pursued. Again, the following statement can be made: With probability of at least

1 - so, the truth performance metric values at P_n are bounded by

¢2 (Pro),#*) - u<, (4.44)

L_2 _< ff2(¢T(P:n),¢[(P_n),P *) <_ U_,._, (4.45)

where the performance metric bounds are

L_ : min _l(zl,z2,P*), (4.46)

U_, L = max Ot (zl, z2. P*), (4.47)

L c = min _2(zl z2 P*), (4.48)¢'2 " "

U_ 2 = max _2 (zl, z2, P'), (4.49)
{:lez_,:,._z D

and the ranges for tile outputs, Z_: and Z.5. at the candidate design point are obtained from

Equations 4.40--4.43 and are

<,< },Ol _ UOI

C

(4.50)

(4.51)

The proximal candidate error analysis produces estimates that apply to a specific design;

the randomly chosen candidate design P* near the surrogate-predicted optimal point b*.

This is in contrast to the proximal region analysis presented in the previous section in which

the error estimates applied to a region of finite measure in the neighborhood of b*. The

proximal region analysis assures that the region will exist with 1 - _2 confidence, but can

not provide precise information as to where in P2x the region exists. Although the proximal

region analysis does provide a sense of stability, it may not be satisfying in some design

scenarios. The error estimates for the candidate design developed in this section provide

an alternative interpretation. In this scenario, the designer can be assured that the error

bounds apply, with 1 - Ec confidence, to the specific, randomly drawn candidate design.

For the eddy-promoter problem, the same two surrogate-predicted designs given in

Table 4.1 are considered. The uncertainty parameters, a and Zc, in Equation 4.37 are set to

a = 0.1578, and Cc = 0.2500 which agree with the N = 24 global validation points that have

been computed in Section 4.2. A new distance metric that quantifies the distance between
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two input points,Pint andPro2,is introducedto definethe predictionneighborhood

1

Ac(Pml, Pro2) = [(Pml -- Pro2)" (P,nl -- Pro2)] 7 , (4.52)

where the [()-()] term above is the vector dot product. The distance metric defined in

Equation 4.52 is simply the Euclidean distance between the two input points in the model

input space tim. The metric in Equation 4.52 emphasizes designs that are "near" the

surrogate-predicted optimal designs based on the eddy-promoter geometry (model inputs)

whereas the distance metric given Equation 4.31 defines designs "near" the surrogate-

predicted optimal design as similarly performing designs. Tile prediction neighborhood is

then defined as that region 7"4,of size a, that minimizes

= max (4.53)
p., _ '/'4

With the prediction neighborhood defined as above. Monte-Carlo sampling is used to em-

pirically measure the neighborhood and acceptance.-rejection techniques are used to obtain

a candidate for each design.

For Design 1. the candidate design input vector is drawn according to the density in

Equation 4.36 is _1 = (0.2256, 0.4976.0.8211.1.0000) and the corresponding surrogate p,'r-

forn,ance metric values are _ = ®(0_0(I3}n). P') = -2.2192 and _c_ = _(_7'0(Pl)_ 15],,) =

12.6431. The predictability statement for the candidate design point reads: With confidence

of at least 75%. the truth performance metric botmds for the candidate design are bounded

by
T ^1-2.3745 < -(9(00 (Pm).P 1) < -2.1050. (4.54)

12.4085 < 'IJ(_b0T(P_),P_) _< 12.7946. (4.55)

For Design 2, the candidate design input vector is _2 = (0.7928, 0.3888, 0.6837, 0.0000)

and the corresponding surrogate performance metric values are _2 = O(_0(_2n),_2) =

-1.6766 and q2c2 = _(_00(P2), P2m) --- 9.4762. The predictability statement for the candidate

point for Design 2 reads: With confidence of at least 7570, the truth performance metric

bounds for the candidate design are bounded by

T ^2-2.3372 < tD(00 (Pro), _2) < -1.4601. (4.56)

8.4716 < qJ(_oT(P2), P_) <_ 9.8613, (4.57)

The two design points and candidate surrogate performance metric pairs, and the pre-

dictability boxes are plotted in the surrogate performance metric plane in Figure 4-4. The

predictability boxes show graphically where the truth performance of the candidate design

(shown as an open circle) will lie with the associated 75% confidence. Comparing the re-
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Figure 4-4: Output plane plot of the two design point peformance pairs (.), candidate

design performance pairs (o), and the predictability boxes for the candidate designs.

suits in Figure 4-4 with the proximal region analysis results plotted in Figure 4-3 show

that the predictability boxes for the candidate designs are sharper than for the proximal

region. However. although both analyses indicate that the surrogates can discriminate be-

tween the designs based on the pumping power metric, neither can do so in terms of the

temperature performance metric. This further reinforces the conclusion that the surrogates

are not t)erforming adequately to select designs based solely on the surrogate predictions.

The geometry for each of the candidate designs is plotted in Figure 4-5 and these can be

compared to the surrogate-predicted optimal designs shown in Figure 4-2.

4.4.3 Design Optimality

In earlier work [77, 78, 79], optimality estimates were obtained for surrogate-predicted

optimizers in the neighborhood T'_ that relied on the assumption of quasi-convexity of

the truth response in the region 7_. The resulting optimality bounds, however, are often

times too large to be of use. Another approach to the optimality analysis is to estimate

the effort required to improve upon the surrogate-predicted design. The procedure is to

develop estimates as to the amount of improvement in each metric that could be realized by

randomly drawing additional simulation points according to the probability density function

used for the validation step. It is again assumed that lower values of the two performance

metrics are preferred.
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Figure 4-5: Eddy-promoter candidate design configurations for each of the surrogate-

predicted optimal designs.

Given a surrogate predicted optimizer _" with associated surrogate performance metric

values _ = ¢5I((_(_,;_). _(PT,_)-P') and _; = _.,(4_'_(_,_). 0_(_,,). _*). the extent that

a surrogate-predicted, optimal design. _'. can be expected to be improved by randomly

selecting design points, and evaluating the truth performance metric values for each. is

bounded. For the analysis of this section, it is assumed that. because lower values of the

performance metrics correspond to preferred designs, a lower value in at least one metric

without an increase in the second, represents an improved design. This assumption has been

shown, in Section 2.4.2. to be consistent with a wide class of nmltiobjective optimization

formulations.

First. an unbounded set of points in the surrogate, performance-metric plane is defined

as

which is the set of all performance metric pairs to the left. and below, the surrogate-

predicted optimal point performance. As stated in the preceding paragraph, input points

with performance metric pairs in A _- can arguably be called better than _'. A second set

of points in the surrogate, performance-metric space is defined as

, _.opt _,optA °pt = {S E _21 3p' E f_', zI E "-'l , z2 E "-'2 s.t.

Ot (gS"_(p',n), _5""£(p'). p') <_ st, _2(_5"_(p',n), @2(P',n). P') --< s'2}. (4.59)
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- - -_A_ •

opt

A_ac h O-A°Pt

Figure 4-6: Surrogate performance metric plane plot showing the surrogate predicted opti-

mizer performance (.), the expanded optimality set .A °pt (light shade), the uncharacterized

optimality, set .A unch {dark shade), and boundary 0.A. °pt.

where the ranges %,opt and "7°Pt"" 1 "-"'2

zOpt = {z I Vp',r, E 9-',1

zOpt , O_'2 = {z I VP,n E "'m,

are

[Or (P',n) - U_o_ (P,n)] < z <_ [qS1(Pro) + UOot (P')]}, (4.60)

[02(p'm) - UOo:(p,,)] <_z <_ + (4.61)

The third region in the surrogate performance metric plane is then simply defined as A unch =

.,4.+ \ .,4,°pt. The region ,A unch is the set of possible performance metric values that improve

upon the surrogate-predicted design performance and correspond to input points in the

region of the design input space that is uncharacterized by the surrogate validation. A

schematic of tile region .,4.°pt (shaded) and ,A unch in the surrogate performance metric plane

is given in Figure 4-6. In the figure, the surrogate performance metric response pair of tile

surrogate predicted optimizer plotted as a solid dot.

Next. a sequence of N °pt, independent, identically distributed, randomly selected inputs,

Pm_,..., P,n.,.om, is drawn according to the probability density function P(Pm); Pro, "

P(Pm), i = 1.... , N °pt. The optimality statement then follows that, the probability that at

least one of the randomly selected design points will have truth performance values that lie

in .Aunch is less than 1 -eL. The number of random input vectors drawn, N °pt, is computed

as

where the parameter eL E]0, 1[ is set independently. The optimality result states that, with

a confidence of less than 1 - eL, N °pt additional truth evaluations at randomly selected
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points will producea designwith truth performancemetricvaluesbetter than .,4 °pt.

For the eddy-promoter design problem, tile upper boundaries for A-_ A +, have been
Ar ,1opt Aopt

plotted as dashed lines in Figure 4-7. Tile boundaries ut._l and -"2 are plotted as thick

solid lines and the uncharacterized optimality regions, .A_ nch and .A._nch, are shown shaded.

Note that the regions A_ nch and .A_ nch overlap in the lower left corner of the plot even

though the lightly shaded ,A_ nch supersedes .A._ nch in that region.

With the optimality regions evaluated, the optimality assessment follows directly. First,

for Design 1, if eL is set to eL = 0.25, then according to 4.62, if an additional N °pt = 72

input points are drawn randomly, and the truth performance metrics for each evaluated.

then tile probability that at least one of the randomly chosen inputs, i, has truth metric

output pair such that

(_(_b_(Pm,),P,),o(OTo (_'m,),Pi)) E A'_nch, (4.63)

is less than 1--zL = 75%. Similarly, for Design 2. if an additional IV"°pt = 72 input points are

drawn randomly, and the truth performance metrics for each evaluated, then the probability

that at least one of the randomly chosen inputs, i. has truth metric output pair such that

(4.64)

is less than 1 - eL = 75%.

The ot)timality analysis provides an additional evaluation as to the quality of the sur-

rogates. For very accurate surrogates, which would in turn result in an extremely small

model prediction error U, the boundary on the regions A_ inch and .,_._nch would be very close

to the surrogate-predicted optimal performance pairs. This would suggest that even with a

great deal of computational effort, the performance of a given design can be improved only'

slightly (and only at best with a 1 - eL certainty) and is likely not worthwhile. However.

the nlodel prediction error for the eddy-promoter problem is fairly large and this is evident

by the large improvement that can be realized (the large distance between A_Iinch and A._ rich

and the design point performance pairs) for the additional computational effort. The ad-

ditional effort, would likely be worthwhile for the eddy-promoter problem suggesting that

improvenlents in the surrogates are required.

4.5 Baseline Surrogate Summary

The primary drawback to the baseline surrogate approach is the difficult construction and

validation of the surrogate in high dimensional input spaces. This can be easily illustrated

by considering the uniform importance function p(p) and a neighborhood of p-measure

sl in the input domain f2 = [0, 1]M. The neighborhood will span at least __ll/M in one of
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Figure 4-7: Uncharacterized optimality regions shown shaded for each of the surrogate-

predicted designs (-).

the input dir(zctions which rapidly approaches one as ,'tI ---+ :x:. The loss of localization

as :tI -+ _c produces a corresponding loss in predictability through increased value of the

neighborhood radius as given in Equation 4.30.

In certain instances, the surrogate approach can be effectively applied to problems with

high dimensional input spaces. One such case occurs when the shape inputs are highly cor-

related. An example is the optimization of smooth body profiles in which highly oscillatory

geometries are not likely optimizers [55, 56, 57]. For cases in which the inputs are highly

correlated, the effective input dimension of the problem is reduced. The eddy-promoter

problem is a second instance in which the surrogates can be effectively applied to a prob-

lem with a high input dimension. By pursuing a Pareto formulation for the two-criteria

optimization problem, the effective dimension for the validation and predictability error

analysis is reduced from the number of inputs to one fewer than the number of critera: here

a single parameter. The surrogate-Pareto formulation has been applied previously [36]. In

Chapter 5, the surrogate-Pareto formulation is applied to the eddy-promoter problem.
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Chapter 5

Surrogate-Pareto Approach

In this chapter, the nonparametric-validated, surrogate-Pareto optimization framework is

presented. The basic structure of this chapter follows the presentation employed to describe

the baseline surrogate framework in Chapter 4. Tile identical Exact/Truth/Surrogate hier-

archy of solution approximations will be assumed.

In Chapter 4, the weaknesses of the b_eline surrogate framework in terms of design

predictability was apparent for problems with more than "'several" inputs. In fact. even

for the cddy-t)romoter problem with only 3 modeled inputs, the surrogate construction is

quite difficult due to tile complexity of the input-output relationship. Although pursuing a

surrogate-Pareto approach to tile design optimization can not avoid the difficulties of sur-

rogate construction, it does dramatically improve the predictability of designs for problems

with many inputs and 2 or 3 performance metrics.

In the following sections, the steps of the surrogate-Pareto framework are presented. The

format for each chapter is to present the theory for a general, two output, two performance

metric problem and then to illustrate the techniques with the eddy-promoter problem which

is a specialized case of the general problem. Throughout the chapter, it is assumed that

lower values of the performance metrics are preferred although no such assumption is made

for the outputs. In the first section, the surrogate construction stage is presented. Second.

the validation stage of the framework is presented. Third, the surrogate-based design step

is described. Fourth, the a posteriori error analysis is described.

5.1 Surrogate Construction

Surrogate construction takes two stages. In the first stage, global surrogates are constructed

to approximate the truth input-output function over the model design space ftm. The sur-

rogate models are g'o(Pm) _ _0(P_) and O0(pm) _- 00(p,,_) and are constructed exactly" as

they were for the baseline surrogate framework in Section 4.1. In the second stage of the

surrogate construction, the global model surrogates are used to form the surrogate perfor-
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mancemetrics,whicharethenusedto find thesurrogatePareto-optimalinput manifold0A

and output manifold l: .4 . The construction stages are presented in the next two sections.

5.1.1 Global Surrogates

The global surrogate construction step is identical to that presented in Section 4.1. Given

Mrn modeled inputs and the associated input (design) vector Pm E f_rn C _/tl,_ that

lies in the model design space f_m, two truth outputs (K 2), r ,= ¢I (Pro) : fire _ _ and

¢T(P_n) :_m _ _, are considered. Surrogates for the truth outputs are constructed,
t T t¢l(Pm) ~ ¢1 (Pro), _(P_n) _ CT(p_n), that approximate the truth input-output function

as closely as possible. The surrogates can have any form, incorporate data from any source,

and in general, no limiting assumptions are made concerning construction or quality. Tile

validity of tile results obtained later are not impacted by the surrogate approximation

quality, however the utility of tile results will be.

The global, eddy-promoter surrogate models, O0(pm) and _bO(Prn), constructed in this

step of the surrogate-Pareto framework are identical to those constructed for the baseline

surrogate framework (Chapter 4). The surrogates are a radial basis function fit to N c° = 256

construction input-output pairs. The radial basis function is described in Appendix D.1. Of

the 256 construction points, 91 have been obtained by appealing to the truth siumlation at

model input points selected based on an orthogonal array (Appendix D.2). The remaining

165 construction points are duplicate points in the design space Qm that arise fronl the

mapping from geometric inputs ZEp to the normalized input vector Pm described in Section

2.5.3. The duplicate points correspond to input points for which Pro2 = 0.1. Slices of the

surrogate surfaces are plotted in Figure 4-1.

5.1.2 Surrogate PO Manifolds

The goal of the design problem is find the design (or designs) that achieves lower val-

ues for the two performance metrics, T _ T _ t_1 (¢1 (Prn), ¢2 (Pro), P ) and _ (¢T(p_n), CT(p'm) , p').

Because the truth values of the outputs are typically very expensive to evaluate, the

global surrogates, ¢1(P_) and ¢'2(P_), constructed in the previous section are used to

form the surrogate performance metrics, _I(P) = _I(¢-'I(P_n),¢_(P_n),P') : fY --4 _7_ and

_2(P) = _2(¢l(P',n), ¢_(P'm),P') : ft' --+ _. Because the output surrogates are (perforce)

computationally inexpensive, the surrogate Pareto-optimal manifolds can be obtained to a

sufficient resolution within a reasonable amount of time.

To determine the surrogate Pareto-optimal input manifold/2.4, the sealarization proce-

dure described in Section 2.4.3 is used. With this approach, the nmlticriteria optinfization

based problem on the performance metrics _I(P) and _2(P) is reduced to a series of scalar

problems parameterized by the scalarization parameter w E l/Y = [0, 1]. A min-max for-

mulation [22] for the scalarization has been used as it ensures that the full £.4 is obtained.
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Theparameterized,scalaroptimizationproblemhastile form

_'(w)= arg rain max(w_l(p), (1 - w)_2(p)), w E Wh,
p'E_'

(5.1)

and is solved for a sufficiently resolved, discrete set Wh = {wt,..., wxpo} C W. The

curve _'(w), with duplicate points, and horizontal and vertical segments removed, is the

surrogate Pareto-optimal input manifold/2A. For each value of w, the solution to Equation

5.1 requires a global optinfization. If the computational cost of _St or _2 is even moderately

high, the total computational effort required to obtain/2 -4 would be prohibitive.

With the surrogate Pareto-optimal input manifold. /2-4, known, the surrogate Pareto-

optimal output manifold OA call be determined from the surrogate performance metric

functions. The surrogate Pareto-optimal output manifold is

OA = (5.2)

The result from the above process is similar to the curves shown in Figure 2-3 but, because

the surrogates are only approximations of the truth outputs, there is no assurance that OA

and/2"'A will correspond to OA and £ "-t, respectively. The validation and error analysis steps

of the surrogate Pareto framework presented in latter sections of this chapter address the

impact that the surrogate errors have on the results.

The surrogate performance metrics for the eddy-promoter problem are obtained by

substituting the surrogate output flmctions constructed in Section 5.1.1 in place of tile

exact output functions in Equations 2.98 and 2.97. The surrogate metrics,

[1O(p) = O(0"0(pm),p) = lOgl0 _ + O0(Prn) , (5.3)

_(P) = tg(¢o(P,n),P)= logt0 [_o(P,n)Re303L], (,5.4)

are dependent on the full design vector p = (Pm,Pa) E fg = [0, 1]M=4. The range for the

analytic input, r/L E [13.332,106.656], is as stated in Section 2.6.1 and the value of r/L is

prescribed by the design input p_ = P4 E [0, 1] and is

rlL = rlLmi n -t- p4(f/Lmax --r/Lmin). (5.5)

The next step of the process is to define the surrogate, performance-metric achievable set

as

.a = e _2 1 zp E fi s.t. O(p) < sl, _(p) _< s2} (5.6)

and find 0"-A. the boundary of ._. not at infinity, with the nfin-max scalarization procedure

in Equation 5.1. The surrogate performance metrics are used and the sequence of scalar
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optimizationproblemsthat mustbesolvedis

_-(w)= argminmax(w_)(p),(1-w)_2(p)), w E Wh (5.7)
pE_

where Wh C W = [0, 1]. Because the surrogates are (by design) trivial to evaluate, solv-

ing for _'(Wh) is a reasonable computational task. Once _'(Wh) is obtained through the

scalarization process, the surrogate PO output manifold is

oA = (e(,1(wh)), (5.s)

Intervals of [0, 1] that are not PO are assumed removed and W is appropriately rescaled so

that the full extent of W = [0, 1] is PO.

To solve the optimization problem in Equation 5.7. a subspace searching, simplex opti-

mization package, SUBPLEX, has been used [61]. T-he SUBPLEX method is based on the

Nelder-Mead simplex algorithm [51], but reduces the searches to lower dimensional mani-

folds to more efficiently solve problems with high input dimensions. The primary reasons

for the using the SUBPLEX package so solve the scalar optimization problems its demon-

strated robustness, its availability at Netlib, and its ease of integration with the radial basis

flmction surrogate routines. Because the SUBPLEX algorithm converges upon local opti-

mizers, random restarts were used to ensure that a global optimal point was obtained for

each value of w.

The surrogate PO nmnifolds have been obtained by solving Equation 5.7 over a suffi-

ciently refined, discrete set Wh. The surrogate PO output manifold is plotted as a solid line

m Figure 5-1 and the corresponding PO input manifold is given in Figure 5-2 in four plots:

in each plot. one component of the input vector p has been plotted versus the scalarization

parameter w. An inner nested, bisection approach has been used to isolate points in Wh for

which the PO input manifold is discontinuous. In total, Equation 5.7 has been solved for

N PO = 932 values of w to obtain sufficient data to reconstruct the PO manifolds accurately

with linear interpolation between points in Wh. In the presentation of the results, it is

assumed that Wh _ W to sufficient accuracy to ignore the discrepancies. Even with the

very inexpensive radial basis function surrogates, the solution to the scalarization problem

at 200 w-points, with 300 random restarts for each value of w, requires approximately 3.6

CPU hours on a Hewlett-Packard C-160 workstation.

The surrogate PO output manifold, 0,4, for the eddy-promoter problem is plotted

in Figure 5-1 as a solid line. The corresponding curve for a plane Poiseuille, heat ex-

changer (Appendix A) is labeled OA PP and plotted in the figure as a dashed line. The

only input available for the plane-channel heat exchanger is rlLPP and the range required

to achieve the same range of temperature performance metric as the eddy-promoter is

rlPP = [24.546,507.849]. The third line (plotted with a dash-dot) in the Figure is the PO
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Figure 5-1: Surrog,.___,ate-predicted. Pareto-optimal output manifolds for tile eddy-promoter

heat exchanger. OA. the plane Poiseuille heat exchanger. OA PP. and for the construction

points. OA c°.

output manifold for tile N _° = 256 construction points. OA _°. It is obtained by evaluating

the performance metrics for each construction-point, truth output value over the range

rlLE [13.332. 106.656], forming the construction achievable set. and then finding the points

that are PO.

The PO output manifolds plotted in Figure 5-1 suggest that a considerable performance

improvement is realized for the eddy-promoter exchanger relative to the simple channel-

flow exchanger. This is evident by considering the required pumping power, (_. for each

exchanger for a given temtSerature performance value, g). In all cases, to achieve a given heat

transfer performance, the plane-channel exchanger requires a higher pumping power, and

hence, is less efficient. The comparison between 0-_ and OA pp shows that the surrogates at

least predict better performance than obtained by simply selecting one of the construction

point configurations. The uncertainty in the accuracy of the output surrogates, however,

calls into question whether the eddy-promoter heat exchanger would actually perform better

than the plane-channel exchanger, and the full set of construction point configurations, in

practice. The surrogate validation and a posteriori error analysis steps will address this

question.
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p Eft versus the scalarization parameter w.

5.2 Surrogate Validation

The validation step of the surrogate-Pareto framework requires two steps. First. the sur-

rogates are validated over the flfll input domain .Q as was done in the validation step of the

baseline surrogate framework. The results of the global validation are used in the optimal-

ity analysis. Second. the surrogates are validated in the lower dimensional manifold of tile

design space "near" the PO input manifold. The results of tile second validation step are

used for predictability analyses of surrogate selected designs.

5.2.1 Global Validation

The global validation step for the surrogate Pareto framework is identical to the validation

step of the baseline surrogate framework. The output surrogates ¢I(P') and ¢2(P') are

validated over the model input domain f_'. The details of the global validation step are

given in Section 4.2 and are only briefly repeated here.

To begin, a sequence of N validation points, Pml,..., PmN, is randomly drawn accord-

ing to the probability density function P(Pm) : f_n --+ _, Pmi "" P(Pm). The truth outputs
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are evaluated at each validation input point and the validation sample set X t'a is formed

X','a = {(pmt,¢_r(pml),¢2r(pm_)),... (P,nx,¢T(pmx),¢.T(Pmx))} (5.9)

The size of the validation sample set is exactly that given in Equation 4.5 and is

[ lN = ln(1 - ct)|
(5.10)

where Fz] is the smallest integer that is greater than z.

The global model prediction error U is computed by finding the maximunl scaled differ-

ence between the surrogate and the truth over the full set of validation input points. The

model prediction error is

(P_i)- q_(P,_i)I I_T(Pmz) - _(Pm,)l))_)o, (P,ni) " -_o,(>,_) "
(5.11)

where gol(P_n) : f_,n _ _ and go., Pm) : f_ -+ /_--. are the two strictly positive, scaling

functions. Introducing the notion of the uncharacterized region T as defined in Equation

4.7, the following validation error statement can be made

Pr(pz(T) < _1) >- 1 - _2- (5.12)

The statement in 5.12 gives an assessment of the surrogate performance over the model

input domain f_n. It bounds, with a confidence of 1 -c2, the maximum scaled difference

between the surrogates and the truth over 1 -el of the design space. The proof of the result

given in Equation 5.12 given the validation sampling theorem of 5.10 is given in Appendix

B.1.

The global validation step for the eddy-promoter problem follows exactly the validation

step in Section 4.2. The validation sample size has been set to N = 24 and the validation

input points have been selected according to a uniform probability density fimction P(Pm) =

1. From the sampling theorem in Equation 5.10, el = 0.0561 and s2 = 0.2500. The scaling

functions have been set to constant values g0(Pm) = 2.00 and 0v(P_) = 1.00. The validation

sample set has been formed and the resulting model prediction error is U = 0.0968. This

result is then used in Section 5.4.3 for the optimality analysis.

5.2.2 Surrogate PO Design Validation

The goal of the surrogate PO validation step is to provide information that will be used for

predictability analyses of surrogate-predicted optimal designs. The strategy is similar to the

global validation described in section 5.2.1. but instead of validating over the entire model

design space f_m, the validation points are restricted to the vicinity of the surrogate PO
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Figure 5-3: A schematic the Pareto-optimal input manifold (solid line), the PO design

space fl_' (shaded), and the model design space tim' (dashed lines).

input manifold £.4. As will be seen later, this restriction greatly, improves the predictability

of tile a posteriori error analysis results. The improved predictability translates directly

to error statements that are much more sharp, and hence, more meaningful and useful.

As was demonstrated in section 2.4.2. the strategy outlined here achieves the improwxl

predictability without losing design generality and flexibility.

For the general problem of validating the surrogate outt)uts. ¢l(P'm) : fY --+ _ and

¢2(P'm) : 9-" --+ _. in the vicinity of the PO input manifold r. A, a PO design space

f_' C f_" is introduced. The PO design space f_,zn' is a finite-width (but narrow) "tube"

in the model design space f_" that contains the surrogate PO input manifold 1:.4. A

schematic of f_Cra'is shown shaded in Figure 5-3 for a two-dimensional model design space

f_'. In the figure, the PO input manifold is plotted as a solid line and the boundaries of

_n is shown as a dashed line.

An importance function, analogous to the importance function P(Pm) used in Section

5.2.1, is introduced pc(p') : ticm' -+ _. The PO importance function serves as a probability

density function for the selection of validation points in f_cm'. It is also used to introduce

the notion of the p-measure of a set g C f_cm'

/_zpZ.(pm) dp m < (5.13)= ' ' 1,

L: I L: rwhich is the weighted volume of 7_ relative to the PO design space f_m ; note #o(f_m ) = 1.

Because of the complexity of the function that describes E A, it is often times not possible,

or practical, to attempt to define a particular density function, pc(P'), explicitly. Instead.

Pc(P') is defined implicitly through the procedure used to select random, validation input

points P --, pc(P')- This approach is straightforward to describe and easy to implement in
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practice. First, a random scalarization parameter is introduced

W'... fw,(w') (5.14)

distributed according to the probability density function fw' (wr) - The scalarization param-

eter specifies the coordinate of a point along the PO input and output manifolds. It can be,

but is not restricted to, the scalarization parameter w used to obtain the PO manifolds in

Section 5.1.2. Another coordinate such as the one of the performance metric values along

the PO output manifold [36] may be used as well. Next, a uniformly distributed, unit vector

V _ and a radius r_-, are introduced. The density function is that function, p_(prm), that

prescribes the distribution of the validation points

PC(Pro), (5.15)

such that the random input points are given by

P',n = + (5.16)

and the validation sample set is

f_,_' = {p" E fi,n'l lip" - _(w')!l -< r,-,. vw' E w'}. (5.17)

Although this implicit definition for Pc(P,,,) is difficult to express analytically, it is easy to

sample in practice.

With the probability density function Pc(P',_) defined as above. N validation points are
!

drawn randomly according to P_i "" Pc(Pro), z = 1,.... N. The validation sample X_, a set is

formed

,y_a = {(pml,¢T(pml),¢T(Pml)),...(pm,\. dpT(pm?.),¢T(pm.¢))}, Pmi" P(Pm)"

(5.18)

by appealing to the truth outputs at each of the Nc input validation points. The size of

the sample set is given by the validation sampling theorem

I lnc2 1 (5.19)Nz:: = ln(1 -_:t)

where [z] is the smallest integer that is greater than z.

The model prediction error is then computed as

Uc = max (max ( ICT(Prni) - _ (pmi)l (5.20)
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Where0o,(P_n) : ft_m' --4 Kt+ and go2(P_n) : fl_' --+ Lr_+ are strictly positive scaling func-

tions. The notion of the the uncharacterized region Tc is defined as

Tr = Pm _ fire [ max [¢r(p.)_ (P_)I I 2 [Pm) (P'm)[
L, Cb' ' : < . (5.21)

The model prediction error is the maximum, absolute difference between the truth and

surrogate outputs over the set of randomly drawn, validation input points Pmi, i = 1,..., N.

The uncharacterized region, Tt:, is that subset of the PO model design space f_cm_for which

the scaled surrogate error is greater than the model prediction error Uc. The validation

provides no information as to the location of the uncharacterized region nor does it provide

any insight as to the magnitude of the errors in that region.

For the eddy-promoter problem, the scalarization parameter w E [0, 1] used to find

the PO manifolds has been used (after being appropriately cleaned up to remove duplicate

points and non-PO segments) to define the probability density function pL(pm). The

probability density for the randomly selected values of W ,-, fn'(w) is uniform, f_t'(w) = t.0.

The radius r'_- in Equation 5.16 has been set to rl- = 0.01. The validation sample size Nz: has

been set to Nr = 21 and. according to tile sampling theorem in Equation 5.19. cl = 0.0639

and e2 = 0.2500. The scaling flmctions have been set to g0 = 1.0 and )_. = 1.0. The

validation sample set has been formed through appeals to the simulation at each validation

point and the model prediction error Ut; has been computed and found to be 5) = 0.02506.

It is immediately obvious that tile model prediction error found in this section is sig-

nificantly smaller than the global validation error computed in Section 5.2.1. The primary

reason for the improvement is that the PO input manifold corresponds (through good for-

tune) to regions in the model design space fire for which the surrogates do a very good job

of approximating the truth. There is no reason to expect an improvement in general, and

in fact, the opposite would more likely be true. The optimization process has the tendency

to find the regions of the design space for which the surrogate approximations are the most

poor. An example of this would be regions in which the surrogates have large undershoots

that are not physically justified. The optimization process would seek these regions out

and the surrogates would falsely indicate that they are PO. Therefore, the reduced error

for the PO validation of this section is mostly attributable to good fortune and should not

be expected in practice. The burden to construct accurate surrogates over the entire model

design space flm remains.

5.3 Surrogate Based Design

The goal of the design problem is to achieve lower values for the two performance metrics

_1 = _t(¢-_(P'm), ¢_-(P'), P') : f_' _ /R and _2 = q52(¢--l(P'), ¢-'_('-'Pro)'', P)" : f_' -+ /R. In
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mostdesignproblemsof relevancehowever,themetricsrepresentcompetinggoalsandcan
not besimultaneouslyreducedto a single,optimal point. The purposefor pursuingthe

Paretooptimizationapproachhasbeento maintain the maxinmmamountof flexibility as
to howto competingmetricswill beprioritizedduringthedesignstage.ThePareto-optimal
solutionswereshownto satisfya wideclassof multicriteria optimizationformulationsin
Section2.4.2. Evenwith the designspacereducedfrom fl to EA , the solution to most

problems of interest are still available and any of the formulations given in Section 2.4.2

apply. Furthermore, the design problem, for the two performance metric case examined

here, is trivial to analyze as the Pareto analysis reduces it to a single tradeoff curve.

For the general, two performance metric problem, a constrained optimization problem

fornmlation is chosen. The optimal input points _q, q E Q = (1,... ,Q), can be expressed

as

_q = arg rain (¢I((Ol(P,n).¢2(P,_).P'))- Vq E Q, (5.22)
{p' _ 9 ie#,(o_(p'_).o_ (p_).p')<__ }

where --q¢2 is the upper boun(t for the constraint metric. _2(c31(p_). ¢2(P',n). P'). The opti-

mizers. _q, are easily obtained from the PO output manifold and the impact of a changing
--q

constraint bound, _I_2. is easily assessed.

For the eddy-promoter problem, the formulation that wiIi be pursued will be to find

the Q designs with the best pressure performance and that achieve a prescribed tempera-

ture performance, oq. q E Q = (1,..., Q). The constrained optinlization problem can be

expressed as

_q = arg t!fin qJ(t/'0(pm), p). Vq E Q. (5.23)
{pEQ I ®(00(pro ).p)_<0" }

where the different temperature performance bounds 0q, q E Q represent what. in practice

nfight, be evolving design goals or a tradeoff analysis.

Three val,es (Q = 3) of the temperature performance b_und m Equation 5.23 have been

chosen. For the first, the design goal is the find nlinimum temperature performance design

and, by inspection of the P0 output nmnifold in Figure 5-1, _1 = -2.2626. For the second

design, the temperature perfornmnce constraint has been relaxed and is _2 = -2.0239.

Finally, for the third design, _a = -1.7106. The optimal design point has been found

for each by finding the value of the scalarization parameter w that corresponds to each

design and then appealing to the PO input manifolds. The surrogate-predicted, optimal

input points are _1 = (0.1008.0.2875, 1.0000, 1.0000), _2 = (0.8080, 0.7286.0.5448.0.1868).

and _a = (0.8549,0.4729,0.6449,0.0000) and the corresponding surrogate, performance

metric pairs are _(_1) : (-2.2626, 12.5137). _(_2) = (-2.0239, 10.6495), and _(_a) :

(-1.7106, 9.4801). The surrogate, performance metric pair at an input point p' is defined
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(c) Design 3; _:3 = (0.8549.0.4729.0.6449.0.0000).

Figure 5-4: Eddy-promoter configurations of tile surrogate-predicted, Pareto-optimal de-

signs used in the design study.

as

O_ t i ff2(F0 (Prn), p')). (5.24)

The configuration for each of the surrogate-predicted optimal designs is plotted in Figure

5-4. From the results shown, it is evident that the topology-change capability does impact

the results. Depending on the preferences given to each performance metric, the optimal

geometry may consist of a single eddy-promoter inclusion as in Design 1, or two distinct

bodies as is the case for Designs 2 and 3. However, the results presented here are not

sufficient to assess whether the two-topology capability enables a significant improvement

in the optimal results. One way to determine the extent of the two-topology impact is to

pursue the Pareto analysis over the subset of the design space that corresponds to only

single-body geometries. By overlaying the single-body, restricted PO output manifold on

the PO output manifold plotted in Figure 5-1, the impact that the two-topology capability

has could be quickly assessed.
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5.4 A Posteriori Error Analysis

The a posteriori error analysis step of the surrogate-Pareto framework is identical to that

of the baseline framework described in Section 4.4. but for the predictability analyses,

the design space is restricted to narrow "tube" f_c encompassing the surrogate PO input

manifold £A. Two error estimate fornmlations for the predictability analysis are examined

in this section: the proximal region analysis in which error bounds are valid for a finite

sized region near the surrogate-predicted optimizers and the proximal candidate analysis

in which the bounds are valid for a specific, randomly chosen design near the surrogate-

predicted optimizer. The optimality analysis proceeds very similarly to that of the tile

baseline framework describe in Section 4.4.3 but is slightly modified to take into account

the fifll Pareto family of optimal designs.

The three analyses, proximal region, proximal candidate, and optimality are examined

in the following three sections. The format for each section is to present the theory for the

general, two output, two performance metric problem and then to give the corresponding

results for the two-body, eddy-promoter example.

5.4.1 Predictability -- Proximal Region

To begin the predictability analysis, it is first assumed that a prediction region _ C -Q_:'

has been defined that contains the surrogate-predicted optimizer _'. As was done for

the baseline analysis, the surrogate-predicted optimal input design vector _* has the form

_" = (_, _) where _ is the vector of modeled inputs and _; is the vector of inputs for

which the performance metric response is known analytically. The prediction region can

similarly be expressed as P_ = P_ x _. The p-measure of the prediction region relative

to the PO design space fi_' is computed as

_Zpc('Pmsl) = p£(pm)dpm = et, (5.25)

and, for the analysis to be valid, must be at least as large as 51. An example of how to

precisely define and measure the prediction neighborhood isgiven for the eddy-promoter

problem laterin this section.

With the prediction neighborhood defined, probabilistic bounds on the truth output

values for inputs points that are in a finite-sized,subset of'P:**are developed. The resulting

predictability statement for the truth outputs follows: With probability of at least 1 - e2,

there will exist points p' E F C P_ such that

r !

to, < eL (P,.) -< (5.26)

lo_- < ¢_(p') < uo_, (5.27)
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where the truth-output bounds are based on the validation results and are

lo_ = min }[¢l(Pm) - Urgol (P')],
{p'EP_ q

! U _ lu¢_ max [¢l(Pm) + L:gO,(Pm)],
{p'e_';, -'1}

I¢2 = min }[¢2(P,n)_ - U£gO2(Pm)],
{ptE'Pm. 1

U " !uo2 = max [¢2(Plm) + £902(Pm)],
{ p' E/:',;, -'1 }

(5.2s)

(5.29)

(5.30)

(5.31)

and Uz: is the PO model prediction error computed from Equation 5.20. The bounds given

in Equations 5.28--5.31 can be computed entirely from the surrogate values, require no

additional truth calculations, and, therefore, are very inexpensive to evaluate.

Equations 5.26--5.31 effectively bound (within a confidence of 1 - _2) the surrogate

output error for points "near" the surrogate predicted optimizer in terms of the outputs. For

the bounds to be usefifl to the designer however, they, need to apply to the truth performance

metrics, qSt(¢r(p_), 7" , r , ,r¢2 (Pro) P') and, _2(¢1 (P,n), cp._(p'), p') Tim predictability' statement

on the performance metrics reads: With probability of at least 1 - e2, there will exist a

region of non-zero measure F' C P_ in the neighborhood of p* such that for all points

p! E F'
T i T t

L¢_ <_ 'b1(¢1 (Pm),¢2 (Pm).P') -< U¢_. (5.32)

T I T t
Lq,2 _ (I)2(¢1 (pm),q52 (Pm)'P') < UC:, (5.33)

where the performance metric bounds are

L_,, = min q51(zl, zo. p'), (5.34)
{p'EP;I ,zl EZ1 ,z2EZ2 }

U¢ 1 = max ¢51(zl, z2, p'), (5.35)
{p'ET': t,zIEZI,z2EZ2}

Le_a = min (I)2(zl, z2, p'), (5.36)
{ P' E'P_-"1 ,:l _.ZI ,z'2EZ2 }

U¢., = max _2(zl, z2, p'), (5.37)
{ p' E P;1 ,z 1 E Z1 ,z 2 E Z,. }

and the output ranges, Zt and Z2, are determined by Equations 5.28--5.31 and are

& = {zllo, < z < uo,}, (5.38)

Z2 = {z I I_. < z < uO,_}. (5.39)

As was the case for the output bounds, the truth performance metric bounds given in
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Equations5.34--5.37requirenoadditionaltruth calculations,andtherefore,areinexpensive
to evaluate.

To definethe predictionneighborhoodP_I precisely, the distance metric A(pml, Pro2)

used in Section 4.4.1 and given in Equation 4.31 has been used. With this definition for

the metric, the prediction neighborhood around the surrogate predicted optimal point _q

is then defined as that region 7_, of size el, that minimizes

rX = Inax _,(Prn, Pq). (5.40)
pmETZ

For the eddy promoter problem, tile distance metric function has been defined based oi1 the

outputs and is selected from the general form

-O0(Pm2)l Ig)_(Pmt)- _'o(Pm2)])A(Pml, Pro2) = max ho ' £-_ "
(5.41)

where ho and h_. are positive scalars. The pressure output scalar h_. in Equation 5.41 has

been set sufficiently high so that the the neighborhood with nlininmm 0_0sensitivity results.

The distance metric in this case reduces to

A(P,,,1,P,n2) = IOo(P,_L) - Oo(Pmz)l. (5.42)

The output bounds in Equations 5.28--5.31 have been evaluated for each of the three

designs found in Section 5.3. The output bounds have then been used to evaluate the bound

quantities given in Equations 5.34--5.37. The resulting predictability statements for the

truth values of the performance metrics are given below. For Design 1. the statement reads:

With probability of at least 75%, there will exist points in F 1 C P_ such that for p' E F 1

_I/_)T_ t \12.1440 _< t o tPm),P') -< 12.5841 (5.43)

Z ! !

-2.2816 < e(00 (Pro), P ) <- -2.2359. (5.44)

For Design 2. the statement reads: With probability of at least 75%, there will exist points

in F 2 C "P_ such that for p' E F2

r !

10.5211 __q2(¢ o (Pm),P') <- 10.7510, (5.45)

_0 0T ' '-2.0631 < (0(Pm),P) _--1"9880" (5.46)

Finally, for Design 3. the statement reads: With probability of at least 75%. there will exist

points in F 3 C P_ such that for p_ E F a

r !9.1360 ! _(_o (Pm),P') ! 9.6281, (5.47)
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Figure 5-5: Output plane plot of the three design point, surrogate-performance pairs,

I-I(_z), i = 1.2_ 3 (-), and the proximal region predictability boxes for each design.

r ! t

-1.8010 _< O(O o (p,_), p ) __%-1.6361. {5.48)

The predictability statements are valid for each design for the corresponding prediction

neighborhood.

The results given above have been plotted in tim output plane in Figure 5-5. In the

figure, the surrogate performance metric values for each design are plotted as solid dots,

the bounds on the truth performance metrics are plotted as boxes, and the surrogate PO

output manifolds for the eddy-promoter and the plane-channel heat exchanger are shown as

solid and dashed lines, respectively. This figure can be compared to the baseline surrogate

framework results given in Figure 4-3 in which the boxes were significantly larger. The

bounds in Figure 5-5 are quite sharp with a clear discrimination between each of three

designs in terms of both the pressure and temperature performance metrics. Additionally,

the surrogate predictability boxes indicate the the surrogates are accurate enough to clearly

show (with 7570 confidence) that the eddy-promoter heat exchanger performance is better

than the plane channel performance for all three designs.

Several factors contribute to the improvement in the predictability boxes plotted in

Figure 5-5 relative to the baseline framework results plotted in Figure 4-3. First, the model

prediction error was significantly lower for the Pareto validation over gtcm than for the

global validation over f_m. This is mostly good fortune, as PO input manifold happens to

lie in regions of ftm for which the output surrogates are accurate. The second reason is
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due to the increased predictability that can be contributed to reducing the dimension of

the validation space from three (tile three model inputs of the model design space 9-,n) to

just a single input (the scalarization parameter w). A third and final contributor to the

sharp predictability boxes is the input Pa = qL for which the performance metric responses

are known analytically. This effect was present in the baseline results as well, but was

overwhelmed by the very poor model validation error computed in Section 4.2.

5.4.2 Surrogate Predictability- Proximal Candidate

The predictability can be evaluated in terms of a randomly selected design point near tile

surrogate-predicted optimizer in much tile same manner as it is for proximal candidate

analysis of the baseline surrogate framework. The only difference is that tile prediction

neighborhood for the Pareto framework analysis is a subset of one-dinlensional PO design

space f_z; instead of tile flfll design space f't.. The remainder of the analysis is identical to

that presented in Section 4.4.2.

Following the presentation of Section 4.4.2. a prediction region 7:'_ C f_c' of p-measure

a and that contains the surrogate-predicted optimal point _" is defined in a manner similar

to that presented for the Proximal Region analysis of Section 5.4.1. A sample candidate

design P_n is selected randomly according to P;,, _- P*'c (P,,,)" The density function Pvc (P,,_)

is defined as

= _P(Pm) , gpm E ;P_n,' (5.49)

-i

P_c (P",)

where T',;,_, C f_,c' is the sub-manifold of P_ that corresponds to the model design space

and the full neighborhood is tile tensor product 5_ = {7:'m_ x p;}. The flfll candidate

design vector P" is given as P* = (f',_. p;) where Pa is the vector of analytic inputs of the

surrogate predicted optimizer _" = (_,_, p;).

A second small parameter, Cc, is introduced and is related to the p-measure of T';n _. e.

by 1
(1 - (1 -

- a(N + 1)

where 0 < ec,_ < 1, and Nc is the validation sample size given in Equation 5.19.

Now, given the two inputs to the analysis _:c and a, and the model prediction error Uc.

the following statement can be made: With probability of at least 1 - Sc, the truth output

values for the input vector P_n are bounded by

C

Ot -- --
(55i)

r _ c

l_., _<¢? (P,,_) _< _o.,, (5.52)
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where the bound values are

uvl = ¢l(P_n)+ U_:g¢,(Pm),

¢.2 = - Urgo2 (Pro),

c = ¢2(P_) + uc_2(P;,,).UO2

Equations 5.51--5.56 bound the truth value of

P_.
the outputs

(5.53)

(5.54)

(5.55)

(5.56)

for the candidate design point

The analysis can be extended to tile performance metrics the same way as it has been

in the previous sections. The following predictability statement results: With probability

of at least 1 - ec, tile truth performance metric values at input point P_ are bounded by

c T A* T ^*
¢2 (Pro) P') :_L¢_ _< (I)1(¢1 (Pro), , _< 5¢l. (5.57)

c T _* *) reL¢.: <_ 'P2(6_(PT,).¢2 (Pro)- :_ < b¢_. (5.58)

where the performance metric bounds are

L,_ = rain 'bl (zl, z2, P'). (5.59)

U_,I = max 'I)l(zl, z2, P'), (5.60)
{:1_ _- _Z_}_1 ,-2

L_,._, = rain q52(zl, z2, P*). (5.61)

U___ = max (I)2(zl, z._, P*). (5.62)
(:_zf,:_z_,)

and the ranges for the outputs, Z_ and Z_, at the candidate design point are obtained from

Equations 5.53--5.56 and are

(5.63)
¢z_ = {z Il_ < z < _o_},

(5.64)z_ = {z IfL < _ < _'L}-

The proximal candidate analysis has been carried out for each of the three eddy-

promoter, heat exchanger design points selected in Section 5.3. Given the N, _ = 21 vali-

dation points used for the PO design validation, the values of _ = 0.2500 and a = 0.1795

are obtained from Equation 5.50. The distance metric used to define the neighborhood P_

is identical to the one used for the proximal region analysis Section 5.4.1 and is given in

Equation 5.42. Monte-Carlo sampling has been used to obtain the three candidate designs.
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(c) Candidate Design 3: P:_ = (0.8083, 0.7211,0.5527. 0.000).

Figure 5-6: Eddy-promoter candidate configurations for the three surrogate-predicted.

Pareto-optimal designs used in the design study.

A single periodicity cell for each of the three candidate designs is given in Figure 5-6. The

input values for each of tile candidate designs are _l = (0.1004,0.3018,0.9950, 1.0000),

_2 = (0.8062, 0.7290, 0.5434, 0.1868). and _3 = (0.8083, 0.7211, 0.5527, 0.000). _ ,.

The candidate design geometries plotted in Figure 5-6 can be compared to the surrogate-

predicted optimal design geometries plotted in Figure 5-4. The candidate and surrogate-

predicted geometries for Design 1 are very similar, but do differ slightly. For Design 2, the

candidate and surrogate-predicted geometries are nearly identical. There is a significant

difference between the candidate and surrogate-predicted geometries for Design 3: in fact,

the candidate geometry for Design 3 is ahnost identical to Design 2. The reason for the

apparent preference toward geometries similar to the surrogate-predicted Design 2 is a

consequence of using the scalarization parameter to randomize the design space in the

Pc (P') definition. Because the model inputs Pm remain nearly constant over a large portion

of the range of w (see Figure 5-3), the effective Pc(P') corresponding to this range is very

large. The Design 2 input point falls into the single geometry range of w and Design 3 is

near the. Because pc(p_,n) is very large over this range, there is a very high probability that

randomly selecting points near Designs 2 and 3 will result in the candidate designs that we
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Figure 5-7: Output plane plot of the surrogate response for the three candidate design points

(o), the surrogate-predicted optimizers (+), and the proximal candidate predictability boxes

for each design.

obtained. Design 1 is also very close to the Design 2 geometry in Figure 5-3 but the less

likely outcome of selecting a candidate similar to Design 1 occurred.

The results of the analysis are given in terms of the predictability statements. For

Design 1, the candidate predictability analysis reads: With probability of at least 75%, the

truth performance bounds for the randomly drawn candidate design point _1 are

T ^1
-2.2805 < O(O o (Pro), _1) _< -2.2433. (5.65)

12.4214 < _(¢0T(P1), ^1- Pro) -< 12.5549. (5.66)

The surrogate-predicted performance metric values for _1 are _)c1 = e(80(p2),P 2) =

-2.2616 and _c 1 = _(_00(P2),P2m) = 12.4933. The bounds are plotted as predictability

boxes in Figure 5-7, along with the surrogate performance pair outputs at the optimal

design point 1](_ 1) = (_)1, _)1) (plus sign) and for the candidate design H(PI) = (_)c1, _cI)

(open dot).

For Design 2, the candidate predictability analysis reads: With probability of at least

75%, the truth performance bounds for the randomly drawn candidate design point _2 are

T ^2
-2.0630 _ ®(8 o (Pm),_2) _< -1.9881, (5.67)
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10.5215 _ _(_b0r(P2),P_) <_ 10.7484. (5.68)

The surrogate-predicted performance metric values for _2 are _)_ = @(_(:P2m),P2) =

-2.0240 and _c2 _iJ(_0(_2), ^2= Pro) = 10.6496. These results are plotted in Figure 5-7 as

well.

Finally, for Design 3, the candidate predictability analysis result reads: With probability

of at least 75%, the truth performance bounds for the randomly drawn candidate design

point _3 are
T A3-1.8307 _< 8(00 (Pm),P 3) _< -1.7322, (5.69)

9.4284 _ 'Ij(_T(p3),P_n ) < 9.6568. (5.70)

The surrogate-predicted performance metric values for _3 are Oc3 = O(0o(Pam),P 3) =

-1.7786 and _ca = _(_0(p3),P_) = 9.5574. The results are plotted in Figure 5-7.

5.4.3 Design Optimality

The global validation results provide the information necessary to estimate the amount of

effort required to improve a design beyond a computable amount determined by the the

global model prediction error. Based on the global model prediction error, U. the maxinmm

absolute output error over a 1 - cl fl'action of the design space is knowi1 with a confidence

level 1 - c2. For the error at a point to be worse than the model prediction error, the point

in question would have to lie in the uncharacterized region T. This notion is used in the

development of the optimality estimates below.

To find the effort required to improve upon a design, an expanded achievable set A ° is

first introduced

./4° = {s E 1R_ I 3P' e fl',zt • Z¢_,z2 • Z_,._, s.t. _l(zt,z2.p') _< st,d22(zl,z2, P ') <_ .s'.,}.

(5.71)

where

z,, = •  112, < z < n,} (5.72)
f_

Z_,_. = {z • IR [ lo_ < z < uo,.} (5.73)

and

lon, = min ¢"_(pt,n ) - U_oL(p' ), (5.74)
{p,_f_,}

n = max ¢_(p_) + UOoL(P'), (5.75)
uo_ {p,_f_,}

lon._,= min qS_(p_n ) - Ugo._,(P'), (5.76)
{p'Ef'/'}

uo_. = max ¢_(P_n) + U!)o.,(P'). (5.77)
- {p'efy}
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Theboundaryof,4 ° is denoted0,4 ° and is the expanded, Pareto-Optimal output manifold.

The interest is in how much effort it would take to find a point p' that has performance

metric response not in ,40. For a point p' to exist such that

(¢1 (¢1 (Pro), ¢2(P_n), P'), q52(¢1 (P,n), ¢2(P'), P')) _ A °, (5.78)

it would have to lie in the uncharacterized region T.

The remainder of the analysis is similar to the baseline surrogate optimality analysis that

was presented in Section 4.4.3. A sequence of N °pt, independent, identically distributed,

randomly selected inputs, Pro1,'-" Prn_opt is drawn according to the probability density

function P(Pm): Pro, "" P(Prn), i = 1,..., N °pt. The optimality statement then follows that,

the probability that at least one of the randomly selected design points will have truth

performance values that lie in `4unch is less than 1 - eL. The number of random input

vectors drawn, N °pt, is computed as

where the parameter eL E]0, 1[ is set indepeudently. The optimality result states that, with

a confidence of less than 1 - eL, ]V°pt additional truth evaluations at randomly selected

points will produce a design better than the surrogate selected design. This is an estimate

of how much work would have to be expended to improve the design beyond a given amount.

The optimality analysis has been performed for the eddy-promoter problem. The PO

boundary of the expanded achievable set, `4o has been computed and is plotted as a dashed

line in Figure 5-8 and the surrogate PO output manifold is plotted as a solid line. The

parameter eL in Equation 5.79 is set to eL = 0.333 and, given the N = 24 validation points

that have been sampled in Section 5-8, the value for for N °pt is N °pt ---=48. The optimality

statement follows: If an additional 48 input points are drawn randomly according to p(p),

f_m, _" p(pm),i = 1,... ,48, the probability that at least one will have truth output pair

nr(Pm, ) = (¢(¢T(pm,), Pi), o(0T(pm, ), Pi) _ ,4o is less than 66.7%.

What the optimality statement gives is an estimate to how much additional work (48

additional truth evaluations in this case) would be required to have at least one point that

achieves a performance better than ,40 with confidence of 1 - eL. For the eddy-promoter

example, the distance between 0,4 and 0,4 ° is very large, suggesting that the potential

improvement is likely worth the additional computational effort. Secondarily, the wide gap

between ON and 0,4 ° indicates that the output surrogates are not performing well enough

to provide meaningful results in terms of global optimality. Although the predictability

for the family of points selected by the Pareto optimization were acceptable according the

predictability analyses in Sections 5.4.1 and 5.4.2, the surrogate predicted PO family of

input points are not likely close (in performance) to the truth PO family.
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Figure 5-8: Output plane plot of optimality results for the surrogate Pareto framework.

For a final estimate of the sm'rogate performance, a hypothetical optimality analysis can

be performed to determine the magnitude of the global model predication error U that would

be necessary to achieve acceptable results. This has been performed for the eddy-promoter

problem by assuming a model prediction error Uhy p that is lower than U = 0.0968 bv a

factor of 5. _.rh9 p = U/5 = 0.0968 = 0.0193. With the hypothetical model prediction error

Uhyp = 0.0193. the associated expanded achievable set `4_yp has been defined as in Equation

5.71 and the expanded PO output manifold O.,4_yp has been determined. The results from

this analysis are plotted in Figure 5-9. In Figure 5-9. true expanded PO output manifold.

0.4 °, is plotted as a dashed line, the hypothetical expanded PO output manifold. O.4°hyp.

is plotted as a dashed-dotted line; and the surrogate PO output manifold 0.4 is plotted

as a solid line. The very narrow gap between 0.4_yp and 0.,4 suggests that if the output

surrogates were improved by a factor of 5, the surrogate designs may be close enough to

the truth optimal designs to be acceptable.

The optimality analysis highlights how poorly the surrogates approximate the truth

outputs for the eddy-promoter. The construction point density should be sufficient to

approximate relatively smooth, well-behaved outputs; N c° = 256 translates roughly to 6

points in each of the 3 input directions for a full factorial design. However. the truth out-

puts are far from smooth for the eddy-promoter; in fact. for changes in the model input

variables, the outputs undergo subcritical bifurcations in which the output is. possibly, dis-

continuous. The discontinuities in the input-output function are very dih_cult to precisely
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Figure 5-9: Output plane plot of hypothetical optimality results (dotted line) for a factor of

five improvement in the model prediction error, the actual optimality bound (dashed line)

and the surrogate Pareto output manifold (solid line).

isolate in three input dimensions and produce large surrogate dispersions fronl the truth

output. No effort has been made in the global surrogate construction step to account for the

possibility of discontinuous outputs and the radial basis interpolation method exacerbates

the difficulties in these regions. A significant improvement in the surrogates (comparable

to what was assumed for the hypothetical analysis above) would likely require that discon-

tinuity locations be determined precisely, and accounted for separately. One approach is

use linear interpolation across the discontinuities as has been done for the lift coefficient

surrogate described in Section 6.4.1.
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Chapter 6

Experimental Airfoil Optimization

In this chapter, tile application of the baseline surrogate framework to the experimental

optimization of a multielenmnt airfoil is presented [54]. Although tile application discussed

ill this chapter is experimental and. therefore, has a zero-mean, measurement error associ-

ated with the outputs, the errors are assumed to be small and the outputs are treated as

noise-free. The surrogate framework has been extended to correctly handle noisy outputs

[78], but these techniques are not used here.

Tile model has been developed, and the data generously provided, by Landman and

Britcher at Old Dominion University (ODU) [44, 45]. Tile motivation for the development

of tile experimental model central to this chapter is the inherent difficulty in examining many

design points experimentally. The model is a three-eleinent airfoil model with internally

embedded actuators (Figure 6-1). It has a nested chord of c = 18 in., a span of b = 36

in.. and was designed for low-speed testing in several wind tunnels, including the NASA

Langley Research Center 2- by 4-foot tunnel and the ODU 3- by 4-foot low-speed facilities.

The main element chord is Cma,n = 14.95 in.. and the flap and slat chords (expressed as a

percentage of the nested chord) are 30 and 14.5 percent, respectively. The flap and slat are

both deflected to 30° for all tests. The particular model used for the test reported here has

been developed for low Reynolds number testing to prove tile experimental testing concepts.

However, the techniques that have been developed should be applicable to higher Reynolds

number testing as well.

Tile flap actuators are computer controlled and position the flap horizontally aim ver-

tically (x and g, respectively). The model has been used in the ODU tunnel to compile

baseline values for lift coefficient CI versus flap gap and overhang at fixed angles of attack

and slat riggings. A first-order optimizer that uses a variant of the method of steepest

descent [24, 10] has been demonstrated in real time[45].

The capability of the computer controller to automatically take data at a prescribed set

of (x,y) trailing edge flap coordinates makes the airfoil model setup ideal for application

of the surrogate methods to an experimental problem. Additionally, the opportunity to
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Figure 6-1: Three-element model with internal flap actuators.

compare the surrogate results to those obtained with in on-line optimizer is unique to this

experimental test.

The baseline, nonparametric-validated surrogate framework presented in Chapter 4 is

applied to the airfoil optimization problem. The problem examined here is a single output

problem that is a flmetion of only two inputs; the (z. y) doordinates of the trailing edge flap.

The baseline surrogate framework provides a practical means to incorporate experimental

data directly into the design optimization pro(:ess. The off-line surrogate approach to

the design optimization has several advantages to on-line optimization [48, 79]. First. by

construction, surrogates are COml)utationally inexpensive and are thus easily" incorporated

into optimization procedures. Additionally, the low comi)utational requirements create a

highly interactive and flexible design environment, which allows the designer to easily pursue

and examine multiple design points. Second, the number of appeals to the experiment or

sinmlation is known a priori, which ensures that the design can be accomplished without

exhausting available resources. Third the surrogate approach offers a natural means to

incorporate data from previous runs and/or other sources.

As regards disadvantages, the primary drawback is that in high dinmnsional design

spaces, surrogate construction is difficult and design localization is poor. The poor design

localization has been demonstrated for the baseline surrogate framework optimization of the

eddy-promoter heat exchanger in Chapter 4. A second limiting factor in the application of

the surrogate approach to experimental tests is the need to validate the surrogate at input

points chosen randomly in the design space. This capability, present in the experiment

central to this work, is not typical of most experimental tests. Finally, surrogate-based

optimization introduces a new source of error. The surrogate validation strategy and error

norms discussed in this paper seek to quantify the discrepancy between the surrogate and

the experiment by providing estimates to the system predictability and optimality.
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Figure 6-2: Definition of gap and overhang.

In this Chapter. tile experimental model and testing methods used are briefly described

first. Second, the optimization problem that is central to the work is presented. Third.

tile three steps steps of tile baseline surrogate framework (i.e.. construction/validation.

surrogate-based optimization, and a posteriori error analysis) are presented, the inputs

to the framework are summarized, and an overview of the more sophisticated surrogate

algorithms is provided. Finally, sample results obtained from the surrogate framework for

output maximization and nmltiple-target designs are presented, and a comparison between

the surrogate approach and direct insertion results reported previously[45] is provided.

6.1 Experimental Testing Methods

An important practical problem encountered in wind-tunnel testing of multielement airfoils

is the need to test a range of configurations to ensure that the optimum is selected. Un-

fortunately, this testing can be prohibitively time consuming if one considers all possible

variables, such as flap position and deflection, slat position and deflection, overall angle

of attack, and Reynolds number. For example, a range of flap locations and orientations

relative to the main element is typically tested. In a cryogenic or pressurized facility, model

geometry changes necessitate large delays in testing. These delays often result in investi-

gators choosing a sparse test matrix and an optimum that is based on only a few points.

The ability to move the flap under computer control provides a unique opportunity to ex-

plore the entire range of useflfl gap and overhang values (Figure 6-2). Two typical pressure

distributions are shown in Figure 6-3. where the ordinate is the pressure coefficient Cp and

the abscissa is distance from the leading edge expressed as a percent of the nested chord.

The data for Figure 6-3(a) represents a point near the peak Ct for this configuration, and

the plot in Figure 6-3(b) indicates full separation over the flap.

In this experiment (performed by Landman and Britcher), the flap actuators, tunnel flow

setting, and data acquisition were controlled by a personal computer running Lab View [50]
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Figure 6-3: Experimental pressure data.

software. A program was written to allow any number of flap positions (in x and y) to

be sampled in any order. Wind tunnel power was controlled such that at the beginning

of each test the tunnel was restarted to avoid hysteresis effects [45]. The experimental

setup allowed the user to start the program, which at each location in turn automatically

measured the free-stream properties, sampled and recorded pressures around the centerline

of the model, and then calculated lift coefficients for the three-element airfoil. This process

required approximately 2 min. for each data point.

Test matrices were developed to survey flap positions, which ranged from approximately

0.8 - 3.5 percent (gap) and -0.4 - 3.4 percent (overhang) relative to the nested chord c. Two

angles of attack and two slat geometries were selected. An angle of attack c_ of 8° was chosen

as representative of an approach value. An _ of 14° represented the limit of good-quality

two-dimensional flow for the ODU tunnel installation without tunnel wall boundary-layer

control. Two slat settings were chosen: a slat gap of 3.03 percent with an overhang of 2.46

percent and. for a smaller gap setting, a slat gap of 2.17 percent with a slat overhang of

-1.46 percent.

Positional accuracy was enhanced by requiring that the flap move to a reference point

above and behind the desired evaluation points (x,.ey > xevat, Yref > Yeval ) and then

back to the evaluation point. This eliminated any effect of backlash in the mechanical

drive-train. Two simple tests provided an indication of the inherent collective error due

to instrumentation and positioning. The first test involved two separate evaluation points;

the first point was in a region in which the flow was known to be fully attached to all

elements, and the second point was chosen in a region in which flow over the flap was fully

separated. The positioning program was used to move the flap between a reference point

and one of the evaluation points. The tunnel was restarted before every evaluation, and the

test was repeated 30 times in each case. The standard deviation of Cl was found to be 0.004

for the separated case (0.16 percent) and 0.0118 for the attached case (.36 percent). For
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the secondtest. the programautomaticallysampled29points overthe entire test region
for two different trials. The error in Ct between the two runs averaged 0.71 percent with

a standard deviation of 0.75 percent. Although these tests are not exhaustive, they do

provide a benchmark for the Cl error.

The turbulence intensity in the ODU tunnel was measured at less than 0.2 percent.

Flow quality over the model was monitored through 12 spanwise taps: 6 on the flap, and

6 on the main element. The flow was considered to be two-dimensional if the magnitude

of the spanwise nonuniformity was less than 5 percent of the total Cp variation over the

entire model [49]. The data presented are uncorrected for boundary effects were taken at a

Reynolds Re number of 1 x 106 based on the nested chord.

6.2 Optimization Problem

We begin by' introducing a vector p of .'tI design inputs that lie in the input (or "design")

domain t2 C K{ M, an input-output function S(p) : f_ -+ IR, and an objective function

• (S(p), p. A) that characterizes our design goals, where A is a vector (or possibly scalar)

design parameter. For the work presented here. we set p = (x,y) (the x- and !/-positions

of the flap) as the M = 2 inputs and restrict ourselves to an input domain 9. of reasonable

flap positions (described in more detail in the results section). The output of interest is the

lift coefficient. S(p) = C/(:r. y). The objective flmction is _[J(S(p). p. A) = IS(P) - At which

has been referred to as the "discrimination" problem [62].

With the above terms defined, the minimizer p" = (x*,y*) to the exact optimization

problem is given by

p* = arg p_i_ IS(p) - A[. (6.1)

In this formulation, the goal is to find that (or "'an") input vector p* = (x*, y*) that achieves

as closely as possible the target lift coefficient value X. If the target lift coefficient X is set

sufficiently small (large), the formulation describes the output minimization (maximization)

problem, assuming that S(p) is bounded from below (above).

In the on-line approach, the experiment is invoked at every optimization step needed to

solve Equation (6.1). In the off-line approach, a surrogate, ,.q(p) _- S(p), for the experiment

is inserted into the optimization problem. The minimizer. _* = (2",,]*), for the resulting,

surrogate-based, discrimination problem is then given by

_* = arg rain IS(p) - ,XI .
pEfl

(6.2)

Here, the optimization proceeds exactly as it would for the on-line approach, but the lift

coefficient surrogate S(p) is invoked instead of the experiment. The surrogate problem that

corresponds to Equation (6.t), but with a general objective function _IJ(S(p), p. A). has been
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reportedby Ye§ilyurt[77]andYe_ilyurtandPatera[79].

6.3 Surrogate Framework

The surrogate approach is broken into four steps. In the first stage, surrogate construction,

experimental results and/or prior information are used to construct the approximation,

,9(p) ._ S(p). In the second step, surrogate validation, additional queries to the experiment

are used to validate the approximation. In the third step of the process, surrogate-based

optimization, solutions to surrogate optimization problem of Equation (6.2) are obtained.

In the fourth and final step, a posteriori error analysis, the results of the validation are

used to analyze the consequences of the surrogate-for-simulation substitution. In the fol-

lowing subsections, the four steps of the baseline surrogate framework are presented and

the designer inputs to the framework are summarized.

6.3.1 Surrogate Construction

A lift coefficient surrogate S(p) = .A(X c°) _ S(p) is constructed using an approximation

scheme, A : (/R M, _) xc° --+ L_C(f_) and a construction sample set of input-output pairs

2( co = {(pi,Rp,).i = 1..... No°}, (6.3)

where Rp, = Cl(xi,Yi) iS a realization of the experimentally measured lift coefficient for

the input flap position Pi = (xi,Yi), and N c° is the number of input-output pairs in the

construction sample. Although the general surrogate framework can handle noisy outputs

[78]. the noise contribution is neglected in the work presented here. Information from prior

studies, outside sources, or asymptotic behavior can also be incorporated into the approx-

imation process either through the definition of the approximation scheme or by including

the input-output pairs in the construction sample. As already stated, the surrogate frame-

work makes no assumptions in regard to the approximation technique and will accept,

and assess, any approximation .A(2(_°). Also, no restriction is placed on either N _° or the

distribution of the construction sample.

6.3.2 Surrogate Validation

To proceed with the description of the surrogate validation, and importance function p(p)

is first introduced. The importance function serves as a probability density function for the

selection of the validation points:

_ p(p)dp = 1. (6.4)
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Theimportancefunctionalsoleadsto the notionof a p-measure associated with p(p): for

any subdomain D C ft,

= Jz_ p(p)dp < 1. (6.5)

t_

#p('D)

The p-measure of 7P is simply the weighted relative M-volume of D.

With the importance function p(p) defined, the validation sample set is formed

X va = {(Pi,Rp,),i = 1,...,Nt'°}, Pi _ P(P), (6.6)

where the input flap positions Pi for the validation sample set are drawn randomly according

to tile probability density flmction p(p). In Equation (6.6) the _ is as "is drawn according

to the probability density function." The validation sample size .'V"va is given by

Nt. a _ lnc2 (6.7)

ln(1 - el)'

and _-I and _'2 are the two uncertainty parameters described below. The model prediction

error U is computed from the validation sample set 2C_'_ as

U= max IRP' -'_(P')] (6.8)
P, _=t-'' _ 9(P,)

where X_;(' denotes the input points of the validation sample set and 9(P) is a strictly

positive, error-scaling flmction described in more detail below.

The result of tile construction/validation process is a probabilistic statement that de-

scribes the global quality of the surrogate S(p). The validation statement can be compactly

written as

Pr{#p(T) < el} _> 1 - e2. (6.9)

where P r{event} is the "probability of event" and T C f2 is tile uncharacterized region

defined as

T = {p E ftl IS(p) - g(P)l > Ug(p)} • (6.10)

The p-measure of the uncharacterized region is bounded by et, and the significance level of

the nonparametric statistical bound is g2. This result can be readily proved [77] with order

statistics [15] and is included in Appendix B.1.

For tile simple case of t)(P) = 1, Equation (6.9) states that. with probability greater

than or equal to 1 - _2, the surrogate error is bounded by U over a region of ft of p-measure

greater than 1 - ¢t- Although this statement is suggestive, it gives neither an indication as

to the location of T nor the magnitude of the surrogate error in T.
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6.3.3 Surrogate-Based Optimization

For the optimization problem, it is assume that the design is given Q target drag coefficient

values Aq, q E Q = {1,...,Q}. The goal of the optinfization is to find the surrogate-

predicted flap positions that minimize the objective function.

pq ----=p* (/k q) -= arg min IS(p) - £q], Vq E Q.
pEf_

(6.11)

The Q targets could represent different target lift coefficients during the flap deployment

schedule, or reflect the goals at different flight conditions (e.g., take-off and landing).

6.3.4 A posteriori Error Analysis

To present the predictability results, the notion of a prediction neighborhood is first in-

troduced. A distance metric A(a, b) is defined for all (a,b) E f_ x fL which determines a

"distance" between two input points a and b. Then for an)" subdomain © C f_ the radius

of D about a point p is defined as rz_(p) = maxp,_Z_ A(p, p'). The prediction neighborhood

located at point p with a p-measure of z. T'(p, z), is that (or a) region D C fi of p-measure z

that minimizes rz_(p). It is assumed that p lies inside P(p. z) and that "P(p. zl ) C T'(p, z2)

for zt < z._,. It can then be stated that. with probability greater than 1 - E2, for all q E Q.

regions F q c _D(pq,c:t) of nonzero measure exist such that for all p' E F q.

tS(P ') -- g(Pq)l -- e(Pq) • (6.12)

It now remains to bound e(p q) and make precise the extent of F q.

Several bounds are possible on e(pq), which is denoted the predictability gap.

predictability of each design can be bounded individually, to obtain

The

e(p q) _ E(pq,_l), Vq E _, (6.13)

where, forpEfiand0<z < 1.

g(p,z) = Ug(p,z) + 6(p,z), (6.14)

and

9(p,z)= max 9(P'), (6.15)
p'E'P(p,z)

6(p,z) = max IS(p ') - S(p)[, (6.16)
p'EP(p,z)

and U is the model prediction error from the validation step, Equation (6.8).

In addition to the joint estimates to the bound on e(pq), the the average error over
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the Q target designs can be bounded. In particular, if it is assumed that the P(pq, el) are

mutually disjoint, it can be shown that

y_ e(p q) < max _ _'(pq,_qel) ,-- 3ECQ
q=l q=l

(6.17)

where 3 = {3t,--.,3Q}, and

L

Cg = {fl_' E _C[0 _< /J; __ 1, l = 1,...,L; _/3_ = 1},
/=1

(6.18)

is tile set of convex L-tuples. The "nonparametric average" is relevant to multiple-target

designs and represents the average, as opposed to the worst-case, estimate of the predictabil-

ity. Also, it is important to note that this predictability bound is calculated entirely in terms

of the inexpensive surrogate, S(p).

Finally, for a successfill validation (i.e.. #p(Y) < el). the expectation of the size of Fq can

be bounded with respect to the validation sample joint probability density. The resulting

bound is. Vq E Q,

) 1 e.2E #P(rq) i _p(T) < e_ _< 1 + --l"ne.--+ )a2-----------_(1 (6.19)
\ el

The expression in Equation (6.19) bounds the average /)-measure of the region F q, with

respect to eL. for many validations.

Several advantages to bounding the errors only to within a finite uncertainty exist [57].

First. a sense of stability is obtained in that the estimates apply not only to a single point.

but to regions F q of nonzero measure, assuring that many input points pq exist that satisfy

the error estimates. Second, for the multiple-target case the estimates become sharper

because there is only a single uncharacterized volume of measure et. Equation (6.17) is the

upper bound for the distribution of the single el-sized uncharacterized region among the Q

designs. This analysis results in a bound on the average error which is less than the average

of the individual predictability gap bounds g(pq, el). Finally. because the predictability

analysis is not prenfised on any particular set of points, the designer has flexibility in the

choice of the metric A(a, b) (discussed further in the next section).

6.3.5 Summary of Surrogate Inputs

To summarize the surrogate framework description, and to highlight the flexibility of the

environment, we note that four inputs to the process are determined by the user. These are

listed below:

i. An importance function p(p) : 9.. -+ _+.
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ii. An error-scalingfunction_(p) : fl -4 J_:_+.

iii. Two uncertaintyparameters,¢t and ¢2, that satisfy 0 < _t,e2 < 1.

iv. A pseudometric A(a, b).

Each input provides the designer with flexibility, and allows the designer's experience to

impact and improve the final surrogate-predicted designs. Although poor choices for the

inputs do not influence the validity of the surrogate results, they greatly reduce the sharpness

of the results. A short description and explanation of each input follows.

The importance function p(p) reflects the designers prejudices in regard to the regions

of _ that are more likely to contain optimizers. In this context, p(p) is essentially a "prior"

on b*. To serve this purpose, p(p) is used as the probability density function in the random

selection of validation points in Equation (6.6). A judicious choice of p(p) (one that is large

in tile regions of the final designs and small elsewhere) can significantly increase the sharp-

ness of the a posteriori error bounds. The increased sharpness is a consequence of much

better physical localization (in terms of input variable extent) of the prediction neighbor-

hood T'(b*, el), which in turn reduces the surrogate sensitivity contribution d(b*, el) to the

error bound in Equation (6.14).

The error-scaling function g(P) can be used by the designer to reduce the impact of

localized surrogate errors on the error bounds of the final design. Because the model

prediction error U in Equation (6.8) is global, a large value of g(P) in regions for which

the approximation is poor will result in a reduced value of the first term on the right-hand

side of Equation (6.14), provided that the final design does not lie in a region where O(p)

is large.

The uncertainty parameters el and e2 are related to the number of validation points

through Equation (6.7). This formula allows the precise budgeting of resources and ensures

that useful solutions can be obtained. In effect, Equations (6.7)-(6.10) describe what is

known in a continuous sense about a function based on discrete sampling. Analysis of

Equation (6.7) shows that, asymptotically for small el and e2, :@.a increases linearly as el

decreases and only logarithmically as _2 decreases. This relationship suggests that although

we can easily (in terms of validation sample size) increase our confidence in the results

(smaller e2), refining the localization of our results (through smaller _1) is much more

difficult. The localization has a direct impact on the final error analysis through a(p, el)

in Equation (6.14). The relative difficulty in further refining the localization illustrates the

need to intelligently select p(p) and where appropriate, A(a,b), both of which can have

similar effects on the localization error.

The final input to the surrogate approach is the pseudometric A(a, b). Because A(a, b)

can be chosen post-validation, various metrics can be examined, and the most appropriate

selected. One possible trade-off is between design localization (in terms of input variable
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extent)andpredictabilityin termsofd(p, el ) in Equation (6.14). An example of the extreme

of this trade-off is the sensitivity minimizing metric

A(a, b) = IS(a) - S(b)[ (6.20)

used for the single-point design study of the results section. This metric gives the lowest

possible _(p, _I ).

6.4 Results

To demonstrate the surrogate framework, it has been applied to the experimental design

of multielement airfoils; specifically, the interest is in in the determination of the optimal

location for the trailiug edge flap. based on the lift coefficient Cl in low-speed, high-lift flight

regimes. The M = 2 design inputs to the problem p = (x,y) are the x and g positions

of the flap. measured from the leading edge of the main airfoil element and normalized by

the main element chord c,_,_ = 14.95 in. The output of interest is Ct. In addition, several

other configuration and flow condition parameters are fixed for the study. These parameters

are listed in Table 6.1 and are the Reynohts tmmber Re. the airfoil angle of attack c_. the

flap and slat deflection angles @l,,p and d_t_l, respectively, and the gap and overhang of the

slat (expressed as a percentage of the nested chord c = 18.0 in.).

In this section, the ,nethod used for the surrogate construction and the validation re-

sults are reported first. Second. the single-point design problem of output maximization is

presented. Third. nmltiple-target design study is pursued that demonstrates the increased

sharpness of the nonparametric average error results. Finally, the results of on-line opti-

mization studies are given and are compared to the off-line, surrogate results.

6.4.1 Surrogate Construction/Validation

The construction sample set X _° consists of 119 input-output pairs that are uniformly

spaced on a 17 x 7 grid. The (x, y) flap positions for the construction sample are plotted as

Re 1,000.000

a 14°

dyt.p 30 °

(_st.t -30°

gapslat 2.17%

overhangstat - 1.46%

Table 6.1: Fixed design study parameters.
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Figure 6-4: Surrogate construction points and the input ("design") domain.

circles in Figure 6-4. The input domain is divided into three subdomains. 9. = f_l U f_2 U f_3,

based oil the flow conditions over the flap. In the first subdomain D-l, the flow over the

flap is attached, with the exception of the extreme aft positions in which some trailing-

edge separation may be present (and desirable). In this region, a radial basis fimction [18]

(described in Appendix D. 1) serves as the approximation method, which yields the surrogate

,_I(P). In 9-3. the flow over the flap is fully separated, and a second radial basis function

fit serves as the surrogate S3(P). In fb), the resolution of the construction points is not

sufficient to determine the precise location of the separation line. In this region, a simple

linear triangulation between SI(P) and _3(P) is used as the surrogate, g2(p). The error

fimction. O(p), is set to unity in 0.1 and f_3, and O(p) = 50 in 9-2. reflecting our uncertainty

in regard to the location of the separation line and, hence, the lack of confidence in the

quality of the surrogate in this region of the input space. A three-dimensional surface plot

of the surrogate is shown in Figure 6-5.

To validate the lift coefficient surrogate, a set of random input points in fl is first

selected and the experiment is conducted at each of these points to form the validation

sample set 2( _'a. The input points are confined to the design space f_ described in the

previous paragraph and shown in Figure 6-4. Because the construction data were obtained

simultaneously with the validation data. there was no expectation in regard to those regions

of the input space that would be of most interest; thus, a uniform probability density

function p(p) was used for the selection of the validation points. The number of points

budgeted for the validation was N _'a = 45 and, using the relationship in Equation (6.7),

c1 = 0.03 and c_ = 0.25 were set. If the form of the surrogate had been known prior to

taking the validation data. the design space could have been restricted to a more feasible

region and a importance function p(p) that would have concentrated validation points close
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Figure 6-5: Three-dimensional mesh plot of the lift coefficient surrogate S(p).

to potential designs could have been used. Both of these changes would have improved the

predictability results for the designs. The scaled model prediction error compute(t according

to Equation (6.8) is U = .0482. The maximum un-scaled error does in fact occur in f2e as

was presupposed and has a value of 0.4824. If 0(p) = 1 had been used everywhere (instead

of as described above), the model prediction error would have been approximately one order

of magnitude larger, and would have overwhehned tiw results.

The surrogate just described and the related validation results serve for all of the designs

discussed in the remainder of this paper. One primary advantage to using the surrogate

approach is the fact that no additional experimental data are required to b(mnd tile errors

of future designs that are pursued with the surrogate. This characteristic, combined with

tile negligible computational time required for each surrogate evaluation, viel(ls a highly

flexible design environment that does not sacrifice predictability.

6.4.2 Single-Point Design, Surrogate Maximization

For the first study, single-point design is pursued that maximizes the surrogate output.

The parameter X is set sufficiently large in Equation (6.2) and the resulting flmction is

minimized. To accomplish the optimization, an unconstrained quasi-Newton optimizer that

is included in the optimization toolbox of Matlab [47] is used. The resulting surrogate-

based optimizer is located at _* = (x*, y*) = (.997, .036), and the surrogate-predicted lift

coefficient value at this point is ,,q(_') = 3.388. The optimizer was started with an initial

guess at P0 = (.987, .033) and required 44 surrogate evaluations to arrive at _'. Because

the surrogate is inexpensive to evaluate (and because there are only two inputs and the

results can be easily visualized graphically), it can be verified that a surrogate-predicted.

global maximum is indeed achieved. This verification is more difficult in a purely on-line
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Figure 6-6: The surrogate-predicted optimizer, b*, and the associated prediction neighbor-
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optimization setting without restarting the optimizer at multiple initial points P0 until there

is sufficient confidence that a global maxinmm has been obtained.

Finally, tile sensitivity minimizing metric A(a, b) = IS(a) - S(b)l in Equation (6.20)

is selected and the a posteriori error analysis for a single-point design is performed. The

prediction neighborhood 7_(_ ", c l) is constructed around _* and the surrogate sensitivity

parameter d = .0328 is found. The optimal point _* and the associated I)rediction neigh-

borhood 7_(_ *, st) are plotted in Figure 6-6. The resulting predictability statement reads as

follows: with confidence level greater than .75, a region F C 7_(_ ", ct) of nonzero measure

exists such that for all p' E F

IS(p') -S(15")1 < e(_'), (6.21)

where

e(_') <_ Ug(f)',cl) + a = .0810. (6.22)

The predictability is relatively good with respect to the surrogate-predicted maximum lift

coefficient, but quite poor with respect to the range of lift coefficients of interest (i.e.,

corresponding to flap positions in ill).

6.4.3 Multiple-Target Designs

For the second design study, a inultiple-target design is pursued. The motivation for such

a study might be an interest in examining the lift coefficient at more than one point of

the deployment of the flap. Specifically, the goal is to to obtain two target lift coefficients:

)d = 3.31 and ,t 2 = 3.25. Isocontours of the surrogate indicate that a locus of points in 9.

exists for each target that exactly satisfies the design goals. One input point for each design

is arbitrarily selected: pl = (x[tl y{1]) = (.987, .033) and p2 = (x[2],y[2]) = (.979,.033).

Around each optimizer, a prediction neighborhood chosen from the family of ellipses that
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have area equal to el and centered at pq is constructed. The neighborhoods are oriented

such that they minimize surrogate sensitivity J(pq,el). The optimizers and associated

prediction neighborhoods are plotted in Figure 6-7.

For each of the designs (q = 1.2), it can be stated with confidence level greater than

0.75 that a region Fq C 7:)(p q, _-1) of nouzero measure exists such that for all p' E Fq

]S(pq) - S(p')l < e(pq), (6.23)

where

e(p 1) = U + 5(p 1. _:_) = .0482 + .0198 = .0680. (6.24)

and

e(p 2) = U + 5(p 2,_1) = .0482 + .0201 = .0683. (6.25)

The above bounds jointly hold on each design. A slightly sharper bound oll the average

error of the two designs is obtained:

_[e(p t) e(p2)] U + .0149 = .0631. (6.26)+ <

The increased sharpness results from an analysis of the worst-case distribution of the unchar-

acterized region between the two prediction neighborhoods. Because of the low sensitivity

of the surrogate in each of the prediction neighborhoods relative to model prediction error

U, the improvement is slight.

6.4.4 Comparison with Direct Insertion

Cases at identical flow conditions have not been examined with both on-line (the method

of steepest ascent) and off-line (the surrogate approach) optimization methods. However.

rough comparisons of the resource requirements are of presented and are of guarded use.

133



Theon-lineresultshavebeenreportedin anearlierpaperbyLandmanandBritcher [45].
In that effort, theyfoundtheoptimizerto beveryrobust(successfulin 6 outof 6attempts)
andinsensitiveto the initial guess.Foreachcase,theystartedtheoptimizerat in initial flap
positionwith a low Cl value and obtained a final value within approximately 0.7 percent

of the maximum C_ value in approximately 20 optimizer steps, requiring approximately 60

experimental data points (3 points per step). With the surrogate method, 119 points were

required to construct the surrogate and an additional 45 were used for the validation, for a

total of 164 experimental data points. For the maximization problem, the a posteriori error

bound was 2.4 percent of the maximum surrogate value.

While the surrogate approach seems to compare unfavorably to the on-line method,

several subtleties lie in its favor. First, for designs chosen with the validated surrogate in

the future (e.g., the nmltiple-target design examined in this paper), similar error bounds still

apply and do not require additional experimental data. In contrast, the on-line approach

would require additional experimental results. Second. a total of 60 evaluations to obtain

an optimal point with the on-line method can be deceptive: to be assured that the result is

indeed optimal, additional information is required. The additional information for the study

cited was in the form of contour plots of a matrix of data. If visualization is not possible,

a number of optimizer restarts would be required to be assured of a global optimal. Third,

in cases for which the objective function is less forgiving, restarts of the on-line optinfizer

would be unavoidable, which would further increase the required experimental data to a level

surpassing that of the surrogate approach. Finally. the obvious difficulty in pursuing on-line

optimization is related to the ultimate application: if the intent is to incorporate the data

as a portion of a larger optimization study, no alternative is available other than to store

the experimental data for later use and extract with some form of an approximation. If one

is restricted to a purely experimental setting, then the ability to quickly, and automatically,

find optimal operating points with the on-line optimizer is highly advantageous.
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Chapter 7

Concluding Remarks

Tile work presented in this thesis represents several significant contributions. First. the

level set based geometry descripti_m provides a unified means to describe a family of

shapes that encompasses multiple topologies. Second, several theoretical extensions to the

nonparanletric-validated surrogate framework have been derived and demonstrated. Third.

the synergy that results from the marriage between the surrogate framework and a Pareto

fornmlation of the multicriteria design problem have been documented.

The level set based geometry definition presented in Section 2.5 represents a way to

describe a family of shapes that encompasses multiple topologies and that is applicable

to surrogate based optimization approaches. The shape description is consistent regard-

less of the topology of the geometry (single or two bodies) and requires no additional

logic for the different topologies. The critical characteristic of the method for its appli-

cation to surrogate-based optimization is that, as shown empirically in Section 2.5.4. the

input output functions are continuous across the topology" change. Continuity is required

if interpolatory surrogate models are to be readily fitted through a collection of input-

output points. The family of shapes defined by the level-set based geometry description

includes cylindrical eddy-promoter configurations that have been examined previously, al-

lowing improvements gained by a richer family of shapes to be identified. Additionally.

the method uses a function superposition technique to define the geometries. It therefore

can be extended in a straightforward manner by the superposition of additional functions

to define richer families of geometries with more complex single body configurations, and

configurations with more than two distinct bodies.

The surrogate framework has been extended in a number of wws. The formulation

given in the thesis is applicable to a general, two performance metric, two output design

problem. The performance metrics can be explicit functions of some or all of the inputs as

well as of both outputs. The input variables that enter into the performance metrics only

explicitly (i.e. the inputs that do not enter into the outputs) are handled independently Dora

the modeled inputs (the inputs that enter through the outputs) so that as much analytic

135



information as possible is used. By validating the outputs instead of the performance

metrics, flexibility is afforded the designer in that the validated outputs call be used any

time in the future for other design problems using different performance metrics. If the

performance metrics are validated, the designer is restricted to those functions for any

future design studies.

A new formulation for the a posteriori error analysis, proximal candidates, has been

derived. Previously, the proximal region error bounds similar to those given in Sections

4.4.1 and 5.4.1 were used. The proximal region error analysis bounds the truth values

on points in a finite-sized subset of the prediction neighborhood. The proximal candidate

error analysis bounds presented in Sections 4.4.2 and 5.4.2 apply to a randomly drawn input

points selected from the prediction neighborhood according to the scaled validation sampling

density. While the proximal region analysis provides a sense of stability to the results (not

just one. but many designs near the surrogate predicted optimizer satisfy the bounds), the

proximal candidate analysis gives a probabilistic bound on the truth performance for an

actual design. If the designer determines tile proximal candidate bounds to be satisfactory.

the design process can be considered a success. In general, the proximal candidate bounds

are likely to be sharper than those for the proximal region analysis.

Finally. by combining the surrogate optimization framework with a Pareto analysis for

a two-criteria design problem, several benefits are realized. First. the Pareto analysis pro-

vides a great deal of information to the designer as to trade-offs and the results that is gives

can be rapidly assessed. Little generality, in terms of applicability to other nmlticriteria

fornmlations, is lost as was demonstrated in Section 2.4.2. Second, a fifll Pareto analysis

is only possible under the best of circumstances. To be practical, the cost each evaluation

of tile performance metrics nmst be trivial. This qualification ahnost never applies for the

truth (the sinmlation or the experiment) necessitating a surrogate approach. The combined

surrogate-Pareto framework takes advantage of the inexpensive surrogates by using them to

screen out uninteresting (non-Pareto-optimal) regions of the design space. The remaining

space of surrogate-predicted, Pareto-optimal designs is used for any future design studies.

Third, and finally, the Pareto analysis improves that predictability of the surrogate frame-

work, error analysis. The scalarization procedure reduced the effective dimension of the

design space from the number of inputs (M), to one less than tile number of outputs. For

the two-criteria eddy-promoter problem, the surrogates are validated for the predictability

analysis over only a single dimension. This greatly increases the predictability of the results

that suffers rapidly with increasing input dimension as demonstrated in Section 4.5.

The primary weakness of the surrogate framework is that the sharpness of the validation

results suffers greatly as the input dimensionality increases. This weakness has been de-

scribed in Section 4.5. For problems in which there are several performance metrics and in

which there is a large number of inputs, it may be more practical to formulate the problem in
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a Paretosense.The Paretoformulationreducesthe effectivedimensionof the problemand.

providedthereareonly a fewperformancemetrics,thepredictability isgreatlyimprovedas
wasshownin Chapter5. The baselinesurrogateframeworkhasbeenshownin prior work

[77,79] to beveryefficientfor problemswith severalinputsand alargenumberof outputs.
The surrogate-Paretoapproachprovidesa strategyfor approachingproblemswith a large
numberof inputsandonly a fewoutputs. Betweenthe twosurrogateframeworks,theonly
problemsthat arecompletelyout of the questionarethosewith a largenumberof inputs
and a largenumberof outputs.
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Appendix A

Plane Channel Heat Exchanger

In this appendix, the solution to the plane Poiseuille protflem is presented. The channel

problem can be solved exactly, and serves as a COlnparison to the eddy-promoter exchanger

results presented in Chapter 5. The plane-channel can also be interpreted in a Pareto sense
L'

as a (admittedly trivial) trade-off proMem with a single design variable qC = t-Tr. The

geometry for the plane channel is shown in Figure A-1. The lower wall of the channel is at

y = -1 and the top wall at g = 1.

The nondimensional flow rate in the plane channel

/'.., , Q = tt(x = O.y.t)dg. (A.1)

will be enforced to Q = _. With the flowrate fixed, the exact flow solution is

uPP(x,y) = (I -- y2), (A.;)

vet'(z, y) = o. (A.a)

Y

l/ll///I//I//l[[////I/ll/I/lllll///ll//I/
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_L

Figure A-I: Plane-Channel Heat Exchanger Geometry.

_x
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3(22 y4) y (A.4)°eP(x' Y) = 12 2'

where the superscript 'PP' indicates the plane Poiseuille solution. The plane Poiseuille

solution is steady and also invariant in the x-direction. The pressure forcing term on tim

right hand side of the x-momentum equation required to achieve the flowrate Q = _ is

fpp 2= --. (A.5)
Re

With the exact solutions given above, the plane Poiseuille outputs, analogous to 00(pro)

and _0(Pm) for the eddy-promoter, can be obtained analytically. The temperature output

can be written as

0PP = T_, - Tin, (A.6)

where Tw is the wall temperature and Tm is the mixed mean temperature

1/_IuPP(y)OPP (y)@. (A.7)
Tm=-'Q 1

Tire over-bar in A.6 means to average spatially over the periodicity cell length l = 6.666.

Tile channel flow result for tim temperature output is

OoPP=____ 13 39 _ 26. (A.8)
16 560 35

Tile pressure output ¢,PP is identically given by Equation A.5

cgp 2= --. (a.9)
Re

The performance metrics can be formed by substituting the exact outputs in Equations

A.8 and A.9 into the performance metric expressions in Equation 2.97 and 2.98. The

resulting, exact performance metrics for the plane-channel heat exchanger are

oPP(,L)
l opp 1 ]= l°gt0 R---7-_r+ ° _-TLJ

= log m + _'_ , (a.10)

ffdPP (rlL ) = log m [¢PPRe3r/3]

= loglo [2Re2r/3]. (A.11)

For the problems studied here, the Reynolds number has been fixed to Re = 250. The

only remaining independent variable for the heat exchanger is the inverse height parameter
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r]L. In this case, the Pareto-optimal output manifold O.A PP is identically the achievable

set .A PP. It is obtained by evaluating equations A.10 and A.11 for a range of r/L E Y =

[rlLmin, rlLmaz]. This has been done for r/Lm,n = 20.0, rlLrnax = 500.0 and the results are

plotted in Figure A-2. At the top of Figure A-2, the Pareto output curve with the pumping

power metric ff12PP(rlL) plotted versus the temperature performance metric O PP is given.

Directly below the Pareto curve is the inverse height parameter r/L plotted versus e PP.

In Chapter5, the plane-channel heat exchanger is used as a reference case for evalu-

ation of the eddy-promoter heat exchanger performace. Included on the Pareto-output

plots presented for the eddy-promoter heat exhanger is the plane-channel Pareto curve.

This curve has been obtained by by solving Equation A.10 for rlL over the range of ten>

perature peformance metric values achieved by the eddy-promoter heat echanger. This 71L

result is the inverse height value required by the plane-channel exchanger to achieve the

given temperature performance which is then substituted into Equation A. 11 to obtain the

plane-channel exchanger pressure metric value that corresponds to the same temperature

performance as the eddy-promoter heat exchanger.
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Figure A-2: Pareto-optimal output manifold (top) for the plane-channel exchanger and the

channel inverse height versus the exchanger temperature peformance (bottom).
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Appendix B

Surrogate Proofs

B.1 Baseline Surrogate Validation Proof

Tile relationship between the validation sample size theorem given in Equation 4.5 and the

resulting validation statement given in Equation 4.8 can t)e proved using order statistics

[15]. Tile proof of this result has been given previously in [36. 37. 77] and is included here

for convenience. The proof is given for the most simple, single output flmction case. without

error scaling functions is given in detail first. Finally. the generalization to the two output.

scaled error analysis cases used throughout the thesis is given at the end of this appendix.

It is fist assumed that there is an input output flmction S(p) : Q --+ /_ and a cor-

responding surrogate _q(p) : ft -+ LR to $(p). No assumptions are made as to the form.

smoothness, or continuity of either $(p) or S(p) and. although in practice it is preferred

that S(p) approximate $(p) as well as possible, the results are valid regardless of the quality

of approximation. The model prediction error function g(p) • 9. --+/R is defined as

g(P) = IS(P) - g(P)l. (B.t)

A function Z(x): [0, x) --+ [0, 1] is introduced and is defined as

Z(x) = #p({p E 9. t g(P) > z}). (B.2)

The function Z(z) gives the measure of the subset of the input domain Q for which g(p) is

strictly greater than x E [0, _c). For situations in which there are regions of finite measure.

9._ C 9.. for which g(p) is constant, {g(p) = z_, Vp E _}, it is necessary to define the jump

in Z(z) as

lim(Z(xc - g) - Z(xc)) = #p(9-c). (B.3)
y',,_o
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Figure B-l: Plot of tile measure function Z(x) versus the surrogate error level x.

The model prediction error U is computed as

U = max IS(P_) - g(P,)l (B.4)
{i=1 ......v}

where the input points P, ..., Px are drawn randomly according to the probability density

function p(p) : -(2--+ n:_. Pi "" p(P). Tile random, uncharacterized region is defined as

T = {p E fi I _'(p) > U}. (B.a)

Next. a random variable Z E [0, 1] which is the measure of the random set T is introduced

and defined as

Z = #p(T), (B.6)

and the goal is to determine the cumulative distribution fi]nction for Z, fz(z) = Pr{Z < z},

from which the desired validation statement will follow directly.

If a variable xz is introduced for z E [0, 1] and defined as

x: = min z. (B.7)
{_E[0,_c)IZ(_)<:}

it follows that

P,-{z(u) <_z} = P,-{u >_x:}.

Introducing a set D C fl defined as

(B.8)

D = {p E f_ ] E(p) > Xz}, (B.9)
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then the measureof the set7?,is givenas

#o(79) = inf Z(z) (B.10)
{z<z:}

and can be bounded as

#p(D) >__z. (B.I1)

From the definition for the model prediction error, the following statement can be made

Pr{U > xz} = Pr{_j E (1,...,N) I Pj • 79}

= 1-Pr{P i Efi\V, Vj e (1 ..... N)}. (B.12)

By making use of the relationship that tile validation points Pi are i.i.d., tile probability

that they will all lie outside of D can be evaluated as

Pr{Pj E Q\'D, Vj C (1 .... ,N)} = (Pr{P1 E 9. \ D}

(#p(n \

(z - #AD))-".

.\"

(B.la)

From B.10. it is known that (1 -/zo(D )) <_ (1 - z), which gives

Pr{Pj E 9. \ D. gj E (1 ..... N)} _< (1 - z) \. (B.14)

and the cunmlative distribution function F:(z) can then be bom_ded by F=(z) as

F:(z) _> .#:(z), (B.15)

where

,#.-(z) = i - (i - z) x. (B.16)

For cases in which Z(x) is continuous, F-(z) = F:(z). Note that, even with tile strict

inequality, Pr{Z < z} satisfies

Pr{Z < z} > (B.17)

although Pr{Z < z} > Pr{Fz(z)} can be false for Z(x) discontinous.

Recognizing that _1 can be substitued for z in Equation B.16 and that _2 = 1 - _(z),

and the solving for the sample size N, tile validation sampling theorem follows

[ lna" 1 (B.18)N= ln(1-ex) '
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where[z] is the smallestintegerthat is greaterthan z.

The extension to the two-output analysis cases examined in the body of this thesis

is straighforward. By redefining the error function £(p) to be identical to the function

validated in Equation 4.6

g(p) = max \ 0el (Pmi) ' go,(Pmi): ,]
(B.19)

the remainder of the analysis follows exactly as has been outlined above.

B.2 Predictability Analysis: Proximal Region

The proof of the predictability results given in Section 4.4 is based on the validation result

in Equation 4.8. For a point p',, to exist such that at least one of the outputs bounds

lo_ _<CT(p_) _< uo,, (B.20)

T t
Io: -< _P'2(Pro) -< uo_,, (B.21)

are not valid, tile point would have to be in T. This follows from tile result that if p_ E

lYre\T, then 4.8 holds, and the bomlds given in Equations 4.16--4.19 hold as well.

The prediction region T'_ is selected by the designer. The worst case scenario in terms

of the error bounds is for the prediction to flfily contain the uncharacterized region T. If

this is the case, then the region F _ E T'_ will exist given the strict inequality on the size

of T in Equation 4.8. This result highlights the necessity of having a prediction region _

that is of at least p-measure _.

The proof of the performance metric bounds in Equations 4.22--4.27 is similar. Because

the output have been shown to be correctly bounded by 4.16--4.21 for P_n E Frm, then for

points p_ E F', the metric bounds will hold as well.

B.3 Predictability Analysis: Proximal Candidates

The proof of the proximal candidate predictability result begins by considering the the error

function g(p) : ft _ _ defined as

g(p) = IS(p) - g(P)l- (B.22)

The validation sample set is formed by selecting N points, P1,-.. P,v, randomly according

to probability density function p(p). The validation sample set X c'a is

X_'_= {(PI,S(P1)),..., (P_\,S(Px)), }, P, "_ p(P). (B.23)
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and the modelpredictionerror iscomputedas

U= max g(P,)= max
i_{_ .....x} i_{l ..... .v}

Next, the random variable : is introduced and is

= f p(p) dp
J:

where

]$(Pi) - g(Pi)l.

-- = {p • fl I C(p) < U}.

The cumulative distribution function for :. F:-(:), is

F:(:) = :N.

which can be easily shown by order statistics [15].

introduced and it follows that it has cumulative distribution function

F:(:) = 1 - F_(:) = 1 - (1 - :).v.

B.24)

B.25)

B.26)

(B.'.)7)

The colnplenlent to :, z = 1 - : is

(B.2s)

Next. considerThe random variable z is the p-measure of the uncharacterized region T.

a prediction region P_, of p-measure or. The expected fi'action of designs P_ for which

g(p) < U can be bounded by

a > f:(z) dz (B.29)

where f:(z) is the probability density function for z and is

dF:(z) _ N(I - z) '\-1 (B.30)
fz(z) - dz

The integration in Equation B.29 gives the conditional expectation for the uncharacterized

region completely inside of the prediction neighborhood. Substituting B.30 into B.29 gives

/((z)a > 1 - N(1 - z) x-t dz (B.31)

I (I _ (i_ a).\-_:)' (B.32)= 1 a(x+ 1)

Finally, recognizing that a = 1 - ec, the expression m Equation 4.37 and given in Section

4.4.2 is obtained
1

(1 - (1 - a)X+l). (B.33)
:c - a(X + i)
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Figure B-2: Schematic of the input domain fL prediction region 7'_, and uncharacterized

region T which is contained completely inside of Pz.

B.4 Optimality Analysis

For a sequence of identically distributed, randomly selected inputs P1,..., P j, is drawn

according to the probability density flmction P(Pm). The random variable

L = minj such that _51(Pj) _< @lmin, and _2(Pj) _< (I)2min, (B.34)

is introduced. It can then be shown that [36], for the validation sample size N, that

N (B.35)
Pr{n > l} > g + l"

It follows that, for CL E]0, 1[, that if m is set such that

m<_N(1-1), (B.36)

that the probability of drawing a sequence of random input vectors P1,.-. ,Pro according

to p(pm) and finding a point such that both

(I)l(¢l(#mi),¢2(#rnj),#j) ___ (I)lmin ,, (B.37)

%(¢t(#_j), ¢2(#_,),#_) _<%m_,, (t3.38)
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is less than 1 - ZL. The lower bounds on the performance metrics are given by

where Z1 and Z2 are

_lmin = min ¢(zl, z2. p'), (B.39)
(p,en,,:,ezF',_-,ez opt}

_2min = rain <I'(zl, z2. p'), (B.40)

7°Pt={zlVp' E9. _ [¢_(p')-UOo,(p'_)]<z<[¢l(p')+UOol(p_)]}, (B.41)

%,opt t t= (P,n)]}" (B.42)_2 {z ]Vp,, E 9. m, [¢'2(P_) - Ugo_(P:n)] -< z < [¢2(P'm) + U9o.. '

For a point p, to have truth peformance metrics such that the lower bounds _lmin and

(I)2min in Equations B.37 and B.38 do not hold. the point must lie in T. If p' E T, then the

output bounds

[¢_(p',,,) - U_)o_ (p',,,)] _< Ct(P',n) -< [¢-_(P'_) + U_o_(p',,)] (B.43)

[_;2(P,n) - b go_(p_,_)] <_ ¢2(P,,) _< [¢_(P',,_) + 5go,.(P,,)] (B.44)

embedded in Equations B.41 and B.42 will not hold. and the performance metrics evaluated

at p' can satis_' Equations B.3T and B.38. Note that if the point p' is in T. there is no

guarantee that the perfornmnce ntetri('s will satisfy B.37 and B.38. only that the possibility

exists, and the confidence level 1 - eL tel)resents an upper bound.

A random variable z =/to(T ) is defined as the p--measure of the uncharacterized region

T. It follows that

/0'P,,(C > l} = P_(C > I I z}_Z&. (B.45/

It is assumed that the point p' E T_ C T and that the measure of the subset _ is given as

h(z) = ILo(T4) <_ z. The probability that of the l randomly drawn points that none of them

lie in T4 is given by

Pr{Pj _ _(z), j = 1..... l} = (1 - h(z)) _. (B.46)

which is then substituted into Equation B.45 to obtain

/0'Pr{L > l} = Pr{L > Z l z}dFz (BAr)

/oo'= (i - h(z))tdFz (B.48)

/0_> (1 - z)tdFz (B.49)

/0'>__ (t - z)_dPz. (B.50)
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Thestepin B.49followsfromthe relationshipthat h(z) <_ z, and B.50 uses the results given

in Equations B.15 and B.16. Finally, substituting Equation B.16 into Equation B.50 and

evaluating the integral gives

Pr(L > l} _0 l Z) ,_> (1 - z)lN(1 - _x'-i (B.51)

N

- g+l" (B.52)

At this point, all that is left is to recognize that Pr(L > l} = gL and to substitute into

Equation B.52 to get the expression in Equation B.36.
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Appendix C

Numerical Methods

C.1 Gaussian Quadrature

The general formula for the Oaussian quadrature used to evaluate the elemental matrices is

detailed below. To approximate the integral of a function g(x) : _.k_ __+1R over a triangular

element, _'_. the following quadrature rule is used

.\'q

_(x) dx _ .4p'___ =_9(x((,)).
_'e i=I

(C.1)

where A 5__ is the area of the element. _ is the quadrature weight at that point, and x({,)

is the quadrature point position in terms of the barycentric coordinates {. A Gaussian

quadrature integration scheme that can exactly' integrate a 5th-order polynomial requires

N'q = 7 quadrature points. The weights wi and weight-points (i = (_1,,{2,._3i), i =

1,...,N "q are listed in Table C.1 [39].

i =, {li _2i {ai

1 0.225 1/3 1/3 1/3
2 0.1323941527 a b b

3 0.1323941527 b a b

4 0.1323941527 b b a

5 0.1259391805 c d d

6 0.1259391805 d c d

7 0.1259391805 d d c

Table C.1: Fifth-order, Gaussian quadrature points, N "q = 7:

0.4701420641, c = 0 7974269853. d = 0.1012865073.

a = 0.0597158717, b =
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Figure C-l: Uniform-in-time difference mesh

C.2 Variable Time-Step, 3rd-Order Adams-Bashforth

C.2.1 Fixed Time-Step Schemes

Tile Adams-Bashforth difference schemes are a family of explicit, multipoint integration

methods [11, 27]. In general, a kth-order Adams-Bashforth scheme requires k function

evaluations at time-steps n,n - 1,...,n - k + 1. The general problem

u'(t) = f(u(t), t) (C.2)

will be central to the discussion of this section.

The uniform, finite difference grid upon which the derivation is based is given in Figure

C-1. To derive the 3rd-order Adams-Bashforth schenm for fixed time-step. At. the general

form of the resulting scheme is assumed to be

Un+l : Un + At(3ofn +/31f_-_ +/_lf_). (C.3)

where the um= u(mAt), fm = f(u(mAt),mAt), and _i, i = 0,...,2 are the unknown

coefficients that must be determined to yield a 3rd-order scheme. Next, each term is ex-

panded about time-step n with a Taylor series, noting that from Equation C.2 u = f', and

u' = f". The Taylor series are substituted into Equation C.3, and the expressions for the

coefficients are solved that eliminate 2"d-order and lower error terms. The result is the

familiar 3_a-order, fixed At, Adams-Bashforth scheme [27].

At 23
Un+l = un + -_( ' fn - 16fn-1 + 5fn). (c.4)

Because, the 3rd-order Adams-Bashforth scheme is fully explicit and has a very good

combination of accuracy and stability properties, it is an attractive choice to advance the

nonlinear convective part of the Navier-Stokes equations. The intersection of the region of

stability with the Imaginary axis is 0.723. For the pure convection equation ut = uuz, the
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Figure C-2: Variable time step size difference mesh

stability limit is thus given as
h

At < 0.723 (C.5)
m .x

The stability limit is known as the Courant condition.

C.2.2 Variable Time-Step Schemes

For problems in which tile convective velocity varies significantly over time. a fixed time

step scheme is inlpractical. A solw_r constrained by a fxed step would require that the user

be able to anticipate maximmn convective velocity a priori so that the time-step couht be

set at the beginning of the run according to C.5. Not only is it ditticult to anticipate the

maximum convective velocity, for t)roblenls in which it varies significantly, such a restriction

greatly increases the required number of steps and hence, the required conlputationa[ time

to obtain a solution. For these reasons, a variable time-step size version of C.4 is derived.

In the following section, an Adams-Bashforth scheme consistent with the 2_d-order time

advancement is derived.

To proceed, the non-uniform finite difference grid shown in Figure C-2 is considered.

Using the method of undetermined coefficients, the terms in Equation C.3 are first expanded

about time-step n with a Taylor series:

a'2 " a3 '" + O(a 4) (C.6)
u,,.-1 = u,, + au" + -gun + -gun

b3 u"'un-1 = un - b*/n + u: - g n +0(b4) (C.7)

fn = u'n (C.8)

fn-1 = u', - bu'/, + -_u','; - u_" + O(b 4 ) (C.9)

C2 tit C3
fn-2 -- u" - cu: + -_ n - -_u;:" + O(c 4) (C.10)

where, in the interest of brevity, a = Atn. b = Atn-l. and c = --/Xtn-i + Atn-e. If Equa-

tions C.6--C.10 are substituted into C.3. and like terms are collected, the following set of
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equations that must be satisfied to obtain a 3rd-order accurate scheme are obtained;

1 1 1

2 2

t30

_x

_2

a

a 2

2

a 3

6

(C.11)

The matrix Equation C.11 is solved for 130, 131, and/32. Substituting for a. b. and c, and

simplifying gives the variable time-step size, 3rd-order Adams-Bashforth scheme [28]

2

Un+l = Un + E Z_f._ _ (C.12)
i=0

where.

Atn
& -

12

Atn
_1 --

12

_./..At,_
& -

12

12At,,_l(At,,_l + Atn_2) + 6At.(2At,,_t + At,,_2) + 4Ate,

Atn-l(Atn-I + Atn-2)

6At,,(At__1 + At._2) + 4Ate]

"Stn-l Atn-2 J

6At, Atn_t + 4At_

Atn_2(Atn_l + At,__)

, (C.13)

(C.14)

(C.15)

As expected, when At,(_2 = At,,_1 = Atn = At.-thesdt_m_+_-E-quation C.4 is recovered.

The derivation of the 3rd-order Adams-Bashforth scheme consistent with the 2nd-order.

backward difference, time advancement of the velocity is similar to the derivation just

described. In this case, the resulting scheme must satisfy the difference form

C_lUn+I "_ Oz'2Lln -- OtlUn-1 = _3of,, +/31fn-1 + _2fn-2. (C.16)

where

2Atn + Atn-1

Otl: Atn(Atn + Atn-1)'

Atn + At,-1 Atn
= , O_3= . (C.17)

c_2 AtnAtn_l Atn-l( Atn + Atn-1)

Again, the Taylor series substitution into Equation C.16 is made and solved for /3i,

i = 0 .... ,2 that eliminate all errors that are 2nd-order and lower. The resulting coefficients

are

Atn
_o -

12

Atn
13t -

12

12Atn_t(Atn__ + Atn-2) + 6At,(2At,,_l + Atn-2) + 4At_Atn-l(Atn-1 + Atn-2)

6Ate(At,_1 + At,-2) + 4At_Atn_lAtn_2

, (C.18)

(c.19)
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Atn
/32 =

12

6AtnAtn-1 + 4At2n

Atn-2(Atn-[ + Atn-2)
(C.20)

For the fixed time-step case in which Atn_2 = Atn_l = At_ = At, the coefficients reduce

to

At,_ (C.21)At,_ Atn 32 = --.
/3o- 12' /31- 12' 12
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Appendix D

Surrogate Models

D.1 Radial Basis Function

We use a radial basis flmction model as a surrogate. Radial basis fnnctions are a well

known class of fuetions used in a number of applications [18]. We begin the description of

tile surrogate used by assuming that we want to construct a surrogate model valid ill the

design space P- E g_.xt for the general function f(p) : O --+ 9:_. f(p) _ f(p). The radial

basis flmction surrogate has the general form

,N-co

f(p) = _ azpi(r,(p)) + S,_(P)
i=l

(D.1)

where c2i(r_(p)) is the radial basis flmction and Pro(P) is tile polynomial of degree m-1. For

co pCOa d-dimension input space, we use the notation p = {Pl ..... Pd} and pCO= {P,1,.--, .aJ

Given this notation, the radius ri(p) is simply the Euclidean distance from construction

point i
!

co 2 ." . , Nco.rt(p) = (Pi,j -PJ) , i = 1. (D.2)
j=l

For the surrogate used in the work reported here. we have used the radial basis function,

_(r) = r 2(m-U logr and have set m = 2. The coefficients az of tile general form (D.1) are

determined from

N c° d

__, a_i(ri(p_O)) + __, bjqj(p_O) = f(p_.O),
i=l j=l

k = I .... , N _°, (D.3)

aiqj(p_°) =0, j= 1..... d+l.
i=l

The polynomial contribution for rn 2 is q(p_O) = {1 co ,p_O _r= ,Pi,1, • • • i.dJ "

(D.4)
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Appealsto the simulationprovidef(p_O). The solution for the unknown coefficients

a = {al,..., a\-co}r and b = {bl,...,bd+t}T is the solution to the following matrix equation

a]EErRBF 0 b = 0 ' (D.5)

where f = {f(p_O),..., (p,\Oco)}T is the solution vector at the construction points. There is

a very real possibility that the matrix equation (D.5) could be ill-conditioned [18], but for

all of the models generated here for a modest number of construction points (on the order of

a couple of hundred), we have not experienced any difficulties with the required inversion.

D.2 Orthogonal Arrays

A critical consideration in approximate optimization approaches is how to best select con-

struction points from the input domain f_ in order to extract as much information as possible

without having to sample at an inordinate number of points. The method used to select

points for the output surrogates constructed in Sections 4.1 and 5.1.1 is based on the work

of Bose [8, 9]. The methods have forumlated and coded into C-routines by Owen [58], and

are part of averv useful package for generating experimental designs.

The array that has been generated for the eddy-promoter surrogate construction point

selection has k = 3 colunms, strength t = 2. and q = 11 levels [58]. An orthogonal array of

strength t is a matrix with _t rows and k columns such that for any n x _ sub-matrix, the q_

possible rows occur the same number of times. The strength k = 2 array with q = 11 levels

has N °rth = qk = 121 rows (input points). The rows were permuted and the construction

points were selected from the N °rth = 121, randomly permuted, orthogonal array points.
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